G. Zhang, Xueqin Zhang, Bo Wang, Qing Du, Yujun Guo, Guangning Wu
{"title":"Study on the Arc Characteristics of Insulator Creeping Discharge under High Velocity Air","authors":"G. Zhang, Xueqin Zhang, Bo Wang, Qing Du, Yujun Guo, Guangning Wu","doi":"10.1109/ICEMPE51623.2021.9509203","DOIUrl":null,"url":null,"abstract":"The roof insulator of high-speed trains is the key equipment for high-voltage isolation and mechanical support of pantographs, and its good insulation service performance is the basic condition to ensure the safe operation of trains. The roof insulation system is the weak link of train insulation performance, therefore, it is necessary to conduct relevant research on the arcing characteristics of roof insulators along the surface discharge under high speed airflow, and to investigate the discharge characteristics of insulators along the surface of high speed trains, which is an important problem that needs to be solved in the process of high speed railroad safety operation. In this paper, surface discharge tests were conducted on insulators using wind tunnel system to obtain the motion characteristics of insulator surface discharge photons at different airflow velocities and the surface discharge arcs of insulators at different airflow velocities. It is found that the surface discharge arc position of the insulator moves significantly to the side and back with the increase of airflow speed; the UV photon and corona discharge area of the insulator move backward with the increase of airflow speed, revealing the surface arc motion characteristics of the insulator under high speed airflow. Therefore, the research of this paper provides important theoretical support for the insulation design and insulation fit of high-speed trains, which ensures the safe and stable operation of high-speed trains.","PeriodicalId":7083,"journal":{"name":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electrical Materials and Power Equipment (ICEMPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMPE51623.2021.9509203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The roof insulator of high-speed trains is the key equipment for high-voltage isolation and mechanical support of pantographs, and its good insulation service performance is the basic condition to ensure the safe operation of trains. The roof insulation system is the weak link of train insulation performance, therefore, it is necessary to conduct relevant research on the arcing characteristics of roof insulators along the surface discharge under high speed airflow, and to investigate the discharge characteristics of insulators along the surface of high speed trains, which is an important problem that needs to be solved in the process of high speed railroad safety operation. In this paper, surface discharge tests were conducted on insulators using wind tunnel system to obtain the motion characteristics of insulator surface discharge photons at different airflow velocities and the surface discharge arcs of insulators at different airflow velocities. It is found that the surface discharge arc position of the insulator moves significantly to the side and back with the increase of airflow speed; the UV photon and corona discharge area of the insulator move backward with the increase of airflow speed, revealing the surface arc motion characteristics of the insulator under high speed airflow. Therefore, the research of this paper provides important theoretical support for the insulation design and insulation fit of high-speed trains, which ensures the safe and stable operation of high-speed trains.