{"title":"An Experimental Hand/Arm Model for Human Interaction With a Telemanipulation System","authors":"J. Speich, L. Shao, M. Goldfarb","doi":"10.1115/imece2001/dsc-24617","DOIUrl":null,"url":null,"abstract":"\n This paper describes the development of a linear single degree-of-freedom lumped-parameter hand/arm model for the operator of a telemanipulaton system. The model form and parameters were determined from experimental data taken from a single degree-of-freedom telemanipulation system. Typically, the human is modeled as a second order mass-spring-damper system [1, 2]. The model developed in this paper, however, includes an additional spring and damper to better approximate the dynamics of the human while interacting with the manipulator. This model can be used in the design and simulation of control architectures for telemanipulation systems and haptic interfaces.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper describes the development of a linear single degree-of-freedom lumped-parameter hand/arm model for the operator of a telemanipulaton system. The model form and parameters were determined from experimental data taken from a single degree-of-freedom telemanipulation system. Typically, the human is modeled as a second order mass-spring-damper system [1, 2]. The model developed in this paper, however, includes an additional spring and damper to better approximate the dynamics of the human while interacting with the manipulator. This model can be used in the design and simulation of control architectures for telemanipulation systems and haptic interfaces.