J. Black, A. Elium, R. White, M. Apte, L. Gundel, R. Cambie
{"title":"6D-2 MEMS-Enabled Miniaturized Particulate Matter Monitor Employing 1.6 GHz Aluminum Nitride Thin-Film Bulk Acoustic Wave Resonator (FBAR) and Thermophoretic Precipitator","authors":"J. Black, A. Elium, R. White, M. Apte, L. Gundel, R. Cambie","doi":"10.1109/ULTSYM.2007.128","DOIUrl":null,"url":null,"abstract":"We describe a miniaturized MEMS particulate matter (PM) monitor that employs the deposition of particulates from a sample stream onto a 1.6 GHz piezoelectric thin-film bulk acoustic wave resonator (FBAR) by means of thermophoresis, and determination of the mass deposited by measuring the resonant frequency shift of a Pierce oscillator. Real-time measurements made in an environmental chamber over several weeks and during a week-long field study in a residence showed excellent correlation with the responses of other commercial aerosol instruments. An added mass of 1 pg could be resolved with the sensor, and the level of detection was 18 mug / m3. The monitor weighs 114 g, has a volume of approximately 245 cm3, consumes less than 100 mW, and would cost less than $100 USD in small quantities. Efforts to further miniaturize the sensor and integrate it with a cell-phone are described.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"42 1","pages":"476-479"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
We describe a miniaturized MEMS particulate matter (PM) monitor that employs the deposition of particulates from a sample stream onto a 1.6 GHz piezoelectric thin-film bulk acoustic wave resonator (FBAR) by means of thermophoresis, and determination of the mass deposited by measuring the resonant frequency shift of a Pierce oscillator. Real-time measurements made in an environmental chamber over several weeks and during a week-long field study in a residence showed excellent correlation with the responses of other commercial aerosol instruments. An added mass of 1 pg could be resolved with the sensor, and the level of detection was 18 mug / m3. The monitor weighs 114 g, has a volume of approximately 245 cm3, consumes less than 100 mW, and would cost less than $100 USD in small quantities. Efforts to further miniaturize the sensor and integrate it with a cell-phone are described.