On Various Ways to Split a Floating-Point Number

C. Jeannerod, J. Muller, P. Zimmermann
{"title":"On Various Ways to Split a Floating-Point Number","authors":"C. Jeannerod, J. Muller, P. Zimmermann","doi":"10.1109/ARITH.2018.8464793","DOIUrl":null,"url":null,"abstract":"We review several ways to split a floating-point number, that is, to decompose it into the exact sum of two floating-point numbers of smaller precision. All the methods considered here involve only a few IEEE floating-point operations, with rounding to nearest and including possibly the fused multiply -add (FMA). Applications range from the implementation of integer functions such as round and floor to the computation of suitable scaling factors aimed, for example, at avoiding spurious underflows and overflows when implementing functions such as the hypotenuse.","PeriodicalId":6576,"journal":{"name":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","volume":"42 1","pages":"53-60"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2018.8464793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We review several ways to split a floating-point number, that is, to decompose it into the exact sum of two floating-point numbers of smaller precision. All the methods considered here involve only a few IEEE floating-point operations, with rounding to nearest and including possibly the fused multiply -add (FMA). Applications range from the implementation of integer functions such as round and floor to the computation of suitable scaling factors aimed, for example, at avoiding spurious underflows and overflows when implementing functions such as the hypotenuse.
浮点数分割的各种方法
我们回顾了分割浮点数的几种方法,即将其分解为两个精度较小的浮点数的精确和。这里考虑的所有方法只涉及一些IEEE浮点运算,四舍五入到最接近,包括可能的融合乘加(FMA)。应用范围从整数函数的实现(如round和floor)到适当比例因子的计算(例如,在实现函数(如斜边)时避免虚假的下溢和溢出)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信