A variational principle for Kaluza–Klein types theories

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Frédéric Hélein
{"title":"A variational principle for Kaluza–Klein types theories","authors":"Frédéric Hélein","doi":"10.4310/atmp.2020.v24.n2.a3","DOIUrl":null,"url":null,"abstract":"For any positive integer n and any Lie group G, given a definite symmetric bilinear form on R n and an Ad-invariant scalar product on the Lie algebra of G, we construct a variational problem on fields defined on an arbitrary (n + dimG)-dimensional manifold Y. We show that, if G is compact and simply connected, any global solution of the Euler-Lagrange equations leads to identify Y with the total space of a principal bundle over an n-dimensional manifold X. Moreover X is automatically endowed with a (pseudo-)Riemannian metric and a connection which are solutions of the Einstein-Yang-Mills system equation with a cosmological constant.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"27 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2020.v24.n2.a3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

For any positive integer n and any Lie group G, given a definite symmetric bilinear form on R n and an Ad-invariant scalar product on the Lie algebra of G, we construct a variational problem on fields defined on an arbitrary (n + dimG)-dimensional manifold Y. We show that, if G is compact and simply connected, any global solution of the Euler-Lagrange equations leads to identify Y with the total space of a principal bundle over an n-dimensional manifold X. Moreover X is automatically endowed with a (pseudo-)Riemannian metric and a connection which are solutions of the Einstein-Yang-Mills system equation with a cosmological constant.
Kaluza-Klein类型理论的变分原理
对于任意正整数n和任意李群G,给定rn上的一个确定的对称双线性形式和G的李代数上的一个常不变标量积,我们在任意(n + dimG)维流形y上定义的域上构造了一个变分问题。我们证明,如果G是紧单连通的,欧拉-拉格朗日方程的任何整体解导致Y与n维流形X上的主束的总空间相识别,并且X被自动赋予一个(伪)黎曼度规和一个连接,它们是具有宇宙常数的爱因斯坦-杨-米尔斯系统方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信