Intuitionistic Fuzzy Modulus Similarity Measure

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Pawan Gora
{"title":"Intuitionistic Fuzzy Modulus Similarity Measure","authors":"Pawan Gora","doi":"10.4018/ijdsst.315757","DOIUrl":null,"url":null,"abstract":"The concept of intuitionistic fuzzy sets (IFSs) is an expected explanation for finding the appropriate information. It originated from concept of fuzzy set (FS) theory, which extends the classical conception of a fuzzy set. This paper examines a number of widely employed similarity measures then proposes an IFSs modulus similarity measure and a weight similarity measure. Initially, the authors have discussed numerous existing similarity measures, some of which are unable to justify the axioms of being a similarity measure. Furthermore, some numerical examples are presented to compare the existing similarity measures with the proposed similarity measure. The proposed similarity measure is a practical and effective method for determining the qualitative similarity between IFSs, which do not have any paradoxical nature. In addition, the proposed similarity measure has been demonstrated practically in pattern recognition and medical diagnosis problem. Suggestions for future research comprise the conclusions of the paper.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.315757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of intuitionistic fuzzy sets (IFSs) is an expected explanation for finding the appropriate information. It originated from concept of fuzzy set (FS) theory, which extends the classical conception of a fuzzy set. This paper examines a number of widely employed similarity measures then proposes an IFSs modulus similarity measure and a weight similarity measure. Initially, the authors have discussed numerous existing similarity measures, some of which are unable to justify the axioms of being a similarity measure. Furthermore, some numerical examples are presented to compare the existing similarity measures with the proposed similarity measure. The proposed similarity measure is a practical and effective method for determining the qualitative similarity between IFSs, which do not have any paradoxical nature. In addition, the proposed similarity measure has been demonstrated practically in pattern recognition and medical diagnosis problem. Suggestions for future research comprise the conclusions of the paper.
直觉模糊模相似测度
直觉模糊集(ifs)的概念是寻找适当信息的预期解释。它起源于模糊集理论的概念,是对经典模糊集概念的扩展。本文考察了一些广泛使用的相似性度量,然后提出了ifs模数相似性度量和权重相似性度量。最初,作者讨论了许多现有的相似性度量,其中一些无法证明作为相似性度量的公理。最后,给出了一些数值算例,将现有的相似测度与所提出的相似测度进行了比较。所提出的相似性度量是确定ifs之间的定性相似性的实用而有效的方法,ifs不具有任何悖论性质。此外,所提出的相似度度量在模式识别和医学诊断问题中得到了实践验证。本文的结论是对未来研究的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信