In-situ Stochastic Training of MTJ Crossbar based Neural Networks

Ankit Mondal, Ankur Srivastava
{"title":"In-situ Stochastic Training of MTJ Crossbar based Neural Networks","authors":"Ankit Mondal, Ankur Srivastava","doi":"10.1145/3218603.3218616","DOIUrl":null,"url":null,"abstract":"Owing to high device density, scalability and non-volatility, Magnetic Tunnel Junction-based crossbars have garnered significant interest for implementing the weights of an artificial neural network. The existence of only two stable states in MTJs implies a high overhead of obtaining optimal binary weights in software. We illustrate that the inherent parallelism in the crossbar structure makes it highly appropriate for in-situ training, wherein the network is taught directly on the hardware. It leads to significantly smaller training overhead as the training time is independent of the size of the network, while also circumventing the effects of alternate current paths in the crossbar and accounting for manufacturing variations in the device. We show how the stochastic switching characteristics of MTJs can be leveraged to perform probabilistic weight updates using the gradient descent algorithm. We describe how the update operations can be performed on crossbars both with and without access transistors and perform simulations on them to demonstrate the effectiveness of our techniques. The results reveal that stochastically trained MTJ-crossbar NNs achieve a classification accuracy nearly same as that of real-valued-weight networks trained in software and exhibit immunity to device variations.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Owing to high device density, scalability and non-volatility, Magnetic Tunnel Junction-based crossbars have garnered significant interest for implementing the weights of an artificial neural network. The existence of only two stable states in MTJs implies a high overhead of obtaining optimal binary weights in software. We illustrate that the inherent parallelism in the crossbar structure makes it highly appropriate for in-situ training, wherein the network is taught directly on the hardware. It leads to significantly smaller training overhead as the training time is independent of the size of the network, while also circumventing the effects of alternate current paths in the crossbar and accounting for manufacturing variations in the device. We show how the stochastic switching characteristics of MTJs can be leveraged to perform probabilistic weight updates using the gradient descent algorithm. We describe how the update operations can be performed on crossbars both with and without access transistors and perform simulations on them to demonstrate the effectiveness of our techniques. The results reveal that stochastically trained MTJ-crossbar NNs achieve a classification accuracy nearly same as that of real-valued-weight networks trained in software and exhibit immunity to device variations.
MTJ交叉棒神经网络的原位随机训练
由于高器件密度、可扩展性和非易失性,基于磁隧道结的交叉棒在实现人工神经网络的权重方面获得了极大的兴趣。mtj中只有两个稳定状态的存在意味着在软件中获得最优二进制权值的开销很大。我们说明了交叉杆结构固有的并行性使其非常适合于原位训练,其中网络直接在硬件上进行教学。由于训练时间与网络的大小无关,它可以显著减少训练开销,同时还可以规避交叉棒中交变电流路径的影响,并考虑到设备中的制造变化。我们展示了如何利用mtj的随机切换特性来使用梯度下降算法执行概率权重更新。我们描述了如何在有和没有接入晶体管的交叉栅上执行更新操作,并对它们进行了模拟以证明我们技术的有效性。结果表明,随机训练的mtj交叉棒神经网络的分类精度与软件训练的实值权重网络几乎相同,并且对设备变化具有免疫力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信