MUX: algorithm selection for software model checkers

Varun Tulsian, Aditya Kanade, Rahul Kumar, A. Lal, A. Nori
{"title":"MUX: algorithm selection for software model checkers","authors":"Varun Tulsian, Aditya Kanade, Rahul Kumar, A. Lal, A. Nori","doi":"10.1145/2597073.2597080","DOIUrl":null,"url":null,"abstract":"With the growing complexity of modern day software, software model checking has become a critical technology for ensuring correctness of software. As is true with any promising technology, there are a number of tools for software model checking. However, their respective performance trade-offs are difficult to characterize accurately – making it difficult for practitioners to select a suitable tool for the task at hand. This paper proposes a technique called MUX that addresses the problem of selecting the most suitable software model checker for a given input instance. MUX performs machine learning on a repository of software verification instances. The algorithm selector, synthesized through machine learning, uses structural features from an input instance, comprising a program-property pair, at runtime and determines which tool to use. \n We have implemented MUX for Windows device drivers and evaluated it on a number of drivers and model checkers. Our results are promising in that the algorithm selector not only avoids a significant number of timeouts but also improves the total runtime by a large margin, compared to any individual model checker. It also outperforms a portfolio-based algorithm selector being used in Microsoft at present. Besides, MUX identifies structural features of programs that are key factors in determining performance of model checkers.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"27 1","pages":"132-141"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

With the growing complexity of modern day software, software model checking has become a critical technology for ensuring correctness of software. As is true with any promising technology, there are a number of tools for software model checking. However, their respective performance trade-offs are difficult to characterize accurately – making it difficult for practitioners to select a suitable tool for the task at hand. This paper proposes a technique called MUX that addresses the problem of selecting the most suitable software model checker for a given input instance. MUX performs machine learning on a repository of software verification instances. The algorithm selector, synthesized through machine learning, uses structural features from an input instance, comprising a program-property pair, at runtime and determines which tool to use. We have implemented MUX for Windows device drivers and evaluated it on a number of drivers and model checkers. Our results are promising in that the algorithm selector not only avoids a significant number of timeouts but also improves the total runtime by a large margin, compared to any individual model checker. It also outperforms a portfolio-based algorithm selector being used in Microsoft at present. Besides, MUX identifies structural features of programs that are key factors in determining performance of model checkers.
MUX:软件模型检查器算法选择
随着现代软件的日益复杂,软件模型检查已成为保证软件正确性的一项关键技术。与任何有前途的技术一样,有许多用于软件模型检查的工具。然而,它们各自的性能权衡很难准确地表征——这使得从业者很难为手头的任务选择合适的工具。本文提出了一种称为MUX的技术,它解决了为给定输入实例选择最合适的软件模型检查器的问题。MUX在软件验证实例的存储库上执行机器学习。算法选择器通过机器学习合成,在运行时使用输入实例的结构特征,包括程序-属性对,并确定使用哪个工具。我们已经为Windows设备驱动程序实现了MUX,并在许多驱动程序和模型检查器上对其进行了评估。我们的结果很有希望,因为算法选择器不仅避免了大量的超时,而且与任何单独的模型检查器相比,还大大提高了总运行时间。它也优于微软目前使用的基于投资组合的算法选择器。此外,MUX识别程序的结构特征,这些结构特征是决定模型检查器性能的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信