Analysis and performance optimization of LoRa network using the CE & SC hybrid approach

Abdellah Amzil, Abdessamad Bellouch, Ahmed Boujnoui, Mohamed Hanini, Abdellah Zaaloul
{"title":"Analysis and performance optimization of LoRa network using the CE & SC hybrid approach","authors":"Abdellah Amzil, Abdessamad Bellouch, Ahmed Boujnoui, Mohamed Hanini, Abdellah Zaaloul","doi":"10.3233/his-220007","DOIUrl":null,"url":null,"abstract":"In this research, we assess the impact of collisions produced by simultaneous transmission using the same Spreading Factor (SF) and over the same channel in LoRa networks, demonstrating that such collisions significantly impair LoRa network performance. We quantify the network performance advantages by combining the primary characteristics of the Capture Effect (CE) and Signature Code (SC) approaches. The system is analyzed using a Markov chain model, which allows us to construct the mathematical formulation for the performance measures. Our numerical findings reveal that the proposed approach surpasses the standard LoRa in terms of network throughput and transmitted packet latency.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"1 1","pages":"53-68"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-220007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we assess the impact of collisions produced by simultaneous transmission using the same Spreading Factor (SF) and over the same channel in LoRa networks, demonstrating that such collisions significantly impair LoRa network performance. We quantify the network performance advantages by combining the primary characteristics of the Capture Effect (CE) and Signature Code (SC) approaches. The system is analyzed using a Markov chain model, which allows us to construct the mathematical formulation for the performance measures. Our numerical findings reveal that the proposed approach surpasses the standard LoRa in terms of network throughput and transmitted packet latency.
基于CE & SC混合方法的LoRa网络分析与性能优化
在本研究中,我们评估了在LoRa网络中使用相同的扩频因子(SF)和在相同的信道上同时传输所产生的碰撞的影响,表明这种碰撞严重损害了LoRa网络的性能。我们通过结合捕获效应(CE)和签名码(SC)方法的主要特征来量化网络性能优势。系统分析使用马尔可夫链模型,这使我们能够构建数学公式的性能指标。我们的数值研究结果表明,所提出的方法在网络吞吐量和传输数据包延迟方面优于标准LoRa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信