GRAPHICAL APPROACH TO AGE-PERIOD-COHORT ANALYSIS

A. Sagan
{"title":"GRAPHICAL APPROACH TO AGE-PERIOD-COHORT ANALYSIS","authors":"A. Sagan","doi":"10.22630/aspe.2021.20.2.17","DOIUrl":null,"url":null,"abstract":"The paper presents the graphical approach to decomposition of APC effect in cohort studies (mainly applied to demographic phenomena) using multilevel or accelerated longitudinal design. The aim of the paper is to present and visualize the pure age, period and cohort effects based on simulated data with an increment of five for each successive age, period and cohort variation. In cohort analysis on real data all of the effects are usually interrelated. The analysis shows basic patterns of two-variate APC decomposition (age within period, age within cohort, cohort within period, period within age, cohort within age, period within cohort) and reveals the trajectory of curves for each of the pure effects. The APC plots are developed using apc library of R package.","PeriodicalId":34287,"journal":{"name":"Acta Scientiarum Polonorum Oeconomia","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum Polonorum Oeconomia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/aspe.2021.20.2.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents the graphical approach to decomposition of APC effect in cohort studies (mainly applied to demographic phenomena) using multilevel or accelerated longitudinal design. The aim of the paper is to present and visualize the pure age, period and cohort effects based on simulated data with an increment of five for each successive age, period and cohort variation. In cohort analysis on real data all of the effects are usually interrelated. The analysis shows basic patterns of two-variate APC decomposition (age within period, age within cohort, cohort within period, period within age, cohort within age, period within cohort) and reveals the trajectory of curves for each of the pure effects. The APC plots are developed using apc library of R package.
年龄-时期-队列分析的图形方法
本文提出了用多水平或加速纵向设计来分解队列研究(主要应用于人口现象)中APC效应的图形方法。本文的目的是在模拟数据的基础上呈现和可视化纯粹的年龄、时期和队列效应,每个连续的年龄、时期和队列变化增量为5。在对真实数据的队列分析中,所有的影响通常是相互关联的。分析显示了两变量APC分解的基本模式(期内年龄、期内年龄、期内队列、期内年龄、期内队列、期内队列),并揭示了每种纯效应的曲线轨迹。使用R包中的APC库开发APC图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
15
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信