{"title":"On the existence and uniqueness of solution to Volterra equation on a time scale","authors":"Bartłomiej Kluczyński","doi":"10.2478/auom-2019-0040","DOIUrl":null,"url":null,"abstract":"Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ, x(0)=0, \\matrix{\\matrix{ V(x)( \\cdot ): = {x^\\Delta }( \\cdot ) + \\int_0^ \\cdot {v\\left( { \\cdot ,\\tau ,x,\\left( \\tau \\right)} \\right)} \\Delta \\tau , \\hfill \\cr \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,x(0) = 0, \\hfill \\cr}\\cr {} \\cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,N) {x_y} \\in W_{\\Delta ,0}^{1,p}\\left( {{{[0,1]}_\\mathbb{T}},{\\mathbb{R}^N}} \\right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t) for Δ-a.e. t∈[0.1]𝕋,x(0)=0, \\left\\{ {\\matrix{{{x^\\Delta }(t) + \\int_0^t {v\\left( {t,\\tau ,x\\left( \\tau \\right)} \\right)} \\Delta \\tau = y(t)\\,\\,\\,for\\,\\Delta - a.e.\\,\\,\\,t \\in {{[0.1]}_\\mathbb{T}},} \\cr {x(0) = 0,} \\cr } } \\right. which is considered on a suitable Sobolev space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ, x(0)=0, \matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,N) {x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t) for Δ-a.e. t∈[0.1]𝕋,x(0)=0, \left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right. which is considered on a suitable Sobolev space.