On the existence and uniqueness of solution to Volterra equation on a time scale

Pub Date : 2019-12-01 DOI:10.2478/auom-2019-0040
Bartłomiej Kluczyński
{"title":"On the existence and uniqueness of solution to Volterra equation on a time scale","authors":"Bartłomiej Kluczyński","doi":"10.2478/auom-2019-0040","DOIUrl":null,"url":null,"abstract":"Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ,                           x(0)=0, \\matrix{\\matrix{ V(x)( \\cdot ): = {x^\\Delta }( \\cdot ) + \\int_0^ \\cdot {v\\left( { \\cdot ,\\tau ,x,\\left( \\tau \\right)} \\right)} \\Delta \\tau , \\hfill \\cr \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,x(0) = 0, \\hfill \\cr}\\cr {} \\cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,𝕉N) {x_y} \\in W_{\\Delta ,0}^{1,p}\\left( {{{[0,1]}_\\mathbb{T}},{\\mathbb{R}^N}} \\right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t)   for Δ-a.e.   t∈[0.1]𝕋,x(0)=0, \\left\\{ {\\matrix{{{x^\\Delta }(t) + \\int_0^t {v\\left( {t,\\tau ,x\\left( \\tau \\right)} \\right)} \\Delta \\tau = y(t)\\,\\,\\,for\\,\\Delta - a.e.\\,\\,\\,t \\in {{[0.1]}_\\mathbb{T}},} \\cr {x(0) = 0,} \\cr } } \\right. which is considered on a suitable Sobolev space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2019-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Using a global inversion theorem we investigate properties of the following operator V(x)(⋅):=xΔ(⋅)+∫0⋅v(⋅,τ,x,(τ))Δτ,                           x(0)=0, \matrix{\matrix{ V(x)( \cdot ): = {x^\Delta }( \cdot ) + \int_0^ \cdot {v\left( { \cdot ,\tau ,x,\left( \tau \right)} \right)} \Delta \tau , \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x(0) = 0, \hfill \cr}\cr {} \cr } in a time scale setting. Under some assumptions on the nonlinear term v we then show that there exists exactly one solution xy∈W Δ,01,p([0,1]𝕋,𝕉N) {x_y} \in W_{\Delta ,0}^{1,p}\left( {{{[0,1]}_\mathbb{T}},{\mathbb{R}^N}} \right) to the associated integral equation { xΔ(t)+∫0tv(t,τ,x(τ))Δτ=y(t)   for Δ-a.e.   t∈[0.1]𝕋,x(0)=0, \left\{ {\matrix{{{x^\Delta }(t) + \int_0^t {v\left( {t,\tau ,x\left( \tau \right)} \right)} \Delta \tau = y(t)\,\,\,for\,\Delta - a.e.\,\,\,t \in {{[0.1]}_\mathbb{T}},} \cr {x(0) = 0,} \cr } } \right. which is considered on a suitable Sobolev space.
分享
查看原文
时间尺度上Volterra方程解的存在唯一性
摘要使用全局反演定理我们调查以下操作符的属性V (x)(⋅):= xΔ(⋅)+∫0⋅V(⋅τ,x,(τ))Δτ ,                            x(0) = 0,{\ \矩阵矩阵{V (x) (\ cdot): = {x ^ \δ}(\ cdot) + \ int_0 ^ \ cdot {V \离开({\ cdot \τ,x,左(\τ\右)}\ \右)}\三角洲\τ,\ hfill \ cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, x (0) = 0, \ hfill \ cr} \ cr {} \ cr}在一个时间范围设置。一些假设下的非线性项v然后我们表明,存在一个解决方案xy∈WΔ,01,p([0, 1]𝕋𝕉N)在W_ {x_y} \{\三角洲,0}^ {1,p} \离开({{{[0,1]}_ \ mathbb {T}}, {\ mathbb {R} ^ N}} \右)相关的积分方程{xΔ(T) +∫0电视(T,τ,x(τ))Δτ= y (T)为Δ-a.e. T∈(0.1)𝕋x (0) = 0,左\ \{{\矩阵{{{x ^ \δ}(t) + \ int_0 ^ t v \{左({t \τx \离开(\τ\右)}\右)}\δ\τ= y (t) \ \ \,为\ \δ-乙醯。\ \ \,t \ {{[0.1]} _ \ mathbb {t}},} \ cr {x (0) = 0} \ cr}} \。这被认为是一个合适的Sobolev空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信