{"title":"Identification of Liver Cancer Driver Mutations from COSMIC Data","authors":"Amna Amin Sethi, N. Shar","doi":"10.5812/ijcm-131281","DOIUrl":null,"url":null,"abstract":"Background: Liver cancer accounts for more than 700,000 deaths each year making it the third leading cause of cancer-related deaths worldwide. Late diagnosis of the disease is the reason behind most deaths. Driver mutations are genetic alterations in tumor cells, which are responsible for the development of liver cancer; therefore, the identification of genetic biomarkers is necessary for the prediction and early diagnosis of liver cancer. Objectives: The main objective of this study is to identify pathogenic alleles that may act as potential biomarkers for the prediction of liver cancer. It also identifies the role of novel genes in liver cancer that are not known to cause the disease. Methods: The mutation data of non-coding variants were downloaded from the catalogue of somatic mutations in cancer (COSMIC) databases. Different bioinformatics tools were, then, used to retrieve mutations in liver cancer. The genetic alterations in hepatocellular carcinoma (HCC) were analyzed. Results: The present study successfully identified pathogenic alleles (consistent mutations) along with a set of novel genes that might be involved in the development of liver cancer. It identified non-coding mutations near human genes and transcription factor binding sites of HepG2 cells. This study also identified mutations near the genes that are involved in the Ras/MAFK signaling pathway of the Hepatitis B virus. Conclusions: The pathogenic alleles identified in this study may provide targeted therapy for the treatment of liver cancer. The identification of novel genes may help to understand the progression of liver cancer at the molecular level. The identified driver mutations may act as potential biomarkers and therapeutic targets for early prediction and treatment of liver cancer.","PeriodicalId":44764,"journal":{"name":"International Journal of Cancer Management","volume":"84 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/ijcm-131281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Liver cancer accounts for more than 700,000 deaths each year making it the third leading cause of cancer-related deaths worldwide. Late diagnosis of the disease is the reason behind most deaths. Driver mutations are genetic alterations in tumor cells, which are responsible for the development of liver cancer; therefore, the identification of genetic biomarkers is necessary for the prediction and early diagnosis of liver cancer. Objectives: The main objective of this study is to identify pathogenic alleles that may act as potential biomarkers for the prediction of liver cancer. It also identifies the role of novel genes in liver cancer that are not known to cause the disease. Methods: The mutation data of non-coding variants were downloaded from the catalogue of somatic mutations in cancer (COSMIC) databases. Different bioinformatics tools were, then, used to retrieve mutations in liver cancer. The genetic alterations in hepatocellular carcinoma (HCC) were analyzed. Results: The present study successfully identified pathogenic alleles (consistent mutations) along with a set of novel genes that might be involved in the development of liver cancer. It identified non-coding mutations near human genes and transcription factor binding sites of HepG2 cells. This study also identified mutations near the genes that are involved in the Ras/MAFK signaling pathway of the Hepatitis B virus. Conclusions: The pathogenic alleles identified in this study may provide targeted therapy for the treatment of liver cancer. The identification of novel genes may help to understand the progression of liver cancer at the molecular level. The identified driver mutations may act as potential biomarkers and therapeutic targets for early prediction and treatment of liver cancer.
期刊介绍:
International Journal of Cancer Management (IJCM) publishes peer-reviewed original studies and reviews on cancer etiology, epidemiology and risk factors, novel approach to cancer management including prevention, diagnosis, surgery, radiotherapy, medical oncology, and issues regarding cancer survivorship and palliative care. The scope spans the spectrum of cancer research from the laboratory to the clinic, with special emphasis on translational cancer research that bridge the laboratory and clinic. We also consider original case reports that expand clinical cancer knowledge and convey important best practice messages.