The dlt Motivic Zeta Function Is Not Well Defined

IF 0.8 3区 数学 Q2 MATHEMATICS
J. Nicaise, Naud Potemans, W. Veys
{"title":"The dlt Motivic Zeta Function Is Not Well Defined","authors":"J. Nicaise, Naud Potemans, W. Veys","doi":"10.1307/mmj/20216148","DOIUrl":null,"url":null,"abstract":"In arXiv:1408.4708, Xu defines the dlt motivic zeta function associated to a regular function $f$ on a smooth variety $X$ over a field of characteristic zero. This is an adaptation of the classical motivic zeta function that was introduced by Denef and Loeser. The dlt motivic zeta function is defined on a dlt modification via a Denef-Loeser-type formula, replacing classes of strata in the Grothendieck ring of varieties by stringy motives. We provide explicit examples that show that the dlt motivic zeta function depends on the choice of dlt modification, contrary to what is claimed in arXiv:1408.4708, and that it is therefore not well-defined.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"37 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216148","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In arXiv:1408.4708, Xu defines the dlt motivic zeta function associated to a regular function $f$ on a smooth variety $X$ over a field of characteristic zero. This is an adaptation of the classical motivic zeta function that was introduced by Denef and Loeser. The dlt motivic zeta function is defined on a dlt modification via a Denef-Loeser-type formula, replacing classes of strata in the Grothendieck ring of varieties by stringy motives. We provide explicit examples that show that the dlt motivic zeta function depends on the choice of dlt modification, contrary to what is claimed in arXiv:1408.4708, and that it is therefore not well-defined.
动机Zeta函数没有很好地定义
在arXiv:1408.4708中,Xu定义了特征为零的域上光滑变量X$上正则函数f$的动态zeta函数。这是对Denef和Loeser引入的经典动机zeta函数的改编。通过denef - loeser型公式在dlt修正上定义了dlt动机zeta函数,用弦动机代替了Grothendieck环中的地层类别。我们提供了明确的例子,表明dlt动机zeta函数取决于dlt修改的选择,与arXiv:1408.4708所声称的相反,因此它没有定义良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信