Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty

D. Qiu, Yibiao Zhao, Chris L. Baker
{"title":"Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty","authors":"D. Qiu, Yibiao Zhao, Chris L. Baker","doi":"10.15607/rss.2020.xvi.069","DOIUrl":null,"url":null,"abstract":"Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) model planning under world state uncertainty, but POMDPs with multimodal beliefs, continuous actions, and nonlinear dynamics suitable for robotics applications are challenging to solve. We present a dynamic programming algorithm for planning in the belief space over discrete latent states in POMDPs with continuous states, actions, observations, and nonlinear dynamics. Unlike prior belief space motion planning approaches which assume unimodal Gaussian uncertainty, our approach constructs a novel tree-structured representation of possible observations and multimodal belief space trajectories, and optimizes a contingency plan over this structure. We apply our method to problems with uncertainty over the reward or cost function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics, and uncertainty about interactions, where other agents’ behavior is conditioned on latent intentions. Three experiments show that our algorithm outperforms strong baselines for planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2020.xvi.069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Autonomous agents are limited in their ability to observe the world state. Partially observable Markov decision processes (POMDPs) model planning under world state uncertainty, but POMDPs with multimodal beliefs, continuous actions, and nonlinear dynamics suitable for robotics applications are challenging to solve. We present a dynamic programming algorithm for planning in the belief space over discrete latent states in POMDPs with continuous states, actions, observations, and nonlinear dynamics. Unlike prior belief space motion planning approaches which assume unimodal Gaussian uncertainty, our approach constructs a novel tree-structured representation of possible observations and multimodal belief space trajectories, and optimizes a contingency plan over this structure. We apply our method to problems with uncertainty over the reward or cost function (e.g., the configuration of goals or obstacles), uncertainty over the dynamics, and uncertainty about interactions, where other agents’ behavior is conditioned on latent intentions. Three experiments show that our algorithm outperforms strong baselines for planning under uncertainty, and results from an autonomous lane changing task demonstrate that our algorithm can synthesize robust interactive trajectories.
成本、动力学和意图不确定性下的潜在信念空间运动规划
自主主体观察世界状态的能力有限。部分可观察马尔可夫决策过程(pomdp)是世界状态不确定性下的规划模型,但具有多模态信念、连续动作和非线性动力学的pomdp是机器人应用中的一个挑战。我们提出了一种动态规划算法,用于在具有连续状态、动作、观察和非线性动力学的pomdp的离散潜在状态的信念空间中进行规划。与先前假设单模态高斯不确定性的信念空间运动规划方法不同,我们的方法构建了一种新的树状结构表示可能的观测值和多模态信念空间轨迹,并在此结构上优化了应急计划。我们将我们的方法应用于奖励或成本函数的不确定性(例如,目标或障碍的配置),动态的不确定性以及交互的不确定性问题,其中其他代理的行为取决于潜在意图。三个实验表明,该算法在不确定条件下的规划中优于强基线,一个自主变道任务的结果表明,该算法可以合成鲁棒的交互轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信