The Same Drift Monodiameter Completion System in Solving Drilling and Well Infrastructure Challenges

M. Godfrey, R. Baker
{"title":"The Same Drift Monodiameter Completion System in Solving Drilling and Well Infrastructure Challenges","authors":"M. Godfrey, R. Baker","doi":"10.2118/205961-ms","DOIUrl":null,"url":null,"abstract":"\n The public domain contains many work efforts that document the advantages of expandable drilling and completions systems within the industry (Filippov 1999, Lohoefer 2000). The ability to place a solid steel liner or patch into a well and transform it by cold working to a larger diameter provides an opportunity to drill deeper while maintaining sufficient wellbore diameter. The use of expandable technology has led to the development of a formable and retractable-segmented cone. The cone supports an expandable system capable of passing through the drift of a base casing that can then result in an expansion providing the equivalent drift diameter. The technology allows the placement of additional liner points in a well that can extend liner lengths as well as isolate sections of open hole that were previously impossible to isolate due to wellbore geometry restriction. There are no limitations on the number of open hole patches installed in a given well which are helpful when wells experience multiple drilling hazards. Each patch can pass through a previously installed patch.\n The idea of monodiameter expandable liners began in the early 2000s (Dupal 2002, Dean 2003). This paper presents the technical challenges, solutions, and testing of a novel monodiameter system that expands 11-3/4 in. 47 lb/ft pipe which can result in a post-expansion drift diameter of 12-1/4 in. Finite element analysis helped transform the concept from the theoretical system to field execution. The work efforts show the successful testing of the monobore system at surface, and the resulting field trials demonstrate the ability of the technology to fulfil the installation objectives. In addition, the success of the methodology has led to the development of additional monobore system sizes.","PeriodicalId":10896,"journal":{"name":"Day 1 Tue, September 21, 2021","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 21, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205961-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The public domain contains many work efforts that document the advantages of expandable drilling and completions systems within the industry (Filippov 1999, Lohoefer 2000). The ability to place a solid steel liner or patch into a well and transform it by cold working to a larger diameter provides an opportunity to drill deeper while maintaining sufficient wellbore diameter. The use of expandable technology has led to the development of a formable and retractable-segmented cone. The cone supports an expandable system capable of passing through the drift of a base casing that can then result in an expansion providing the equivalent drift diameter. The technology allows the placement of additional liner points in a well that can extend liner lengths as well as isolate sections of open hole that were previously impossible to isolate due to wellbore geometry restriction. There are no limitations on the number of open hole patches installed in a given well which are helpful when wells experience multiple drilling hazards. Each patch can pass through a previously installed patch. The idea of monodiameter expandable liners began in the early 2000s (Dupal 2002, Dean 2003). This paper presents the technical challenges, solutions, and testing of a novel monodiameter system that expands 11-3/4 in. 47 lb/ft pipe which can result in a post-expansion drift diameter of 12-1/4 in. Finite element analysis helped transform the concept from the theoretical system to field execution. The work efforts show the successful testing of the monobore system at surface, and the resulting field trials demonstrate the ability of the technology to fulfil the installation objectives. In addition, the success of the methodology has led to the development of additional monobore system sizes.
相同进路单径完井系统解决钻井和基础设施挑战
公共领域包含许多工作成果,记录了可扩展钻井和完井系统在行业中的优势(Filippov 1999, Lohoefer 2000)。将实心钢尾管或补片放入井中,并通过冷加工将其改造成更大的直径,这为在保持足够井筒直径的同时钻得更深提供了机会。可扩展技术的使用导致了可成形和可伸缩分段锥体的发展。锥筒支撑一个可扩展的系统,该系统能够通过基础套管的漂移,从而产生膨胀,提供等效的漂移直径。该技术允许在井中放置额外的尾管点,从而延长尾管长度,并隔离裸眼井中由于井筒几何形状限制而无法隔离的部分。在一口井中安装裸眼补丁的数量没有限制,当井遇到多种钻井危险时,这是很有帮助的。每个补丁都可以通过以前安装的补丁。单直径膨胀尾管的概念始于21世纪初(Dupal 2002, Dean 2003)。本文介绍了一种新型单径系统的技术挑战、解决方案和测试,该系统可扩展至11-3/4 in。47磅/英尺的管道,膨胀后的通径可达12-1/4英寸。有限元分析帮助将概念从理论系统转变为现场执行。工作成果表明,单孔系统在地面上的测试取得了成功,由此产生的现场试验表明,该技术能够实现安装目标。此外,该方法的成功还导致了更多单孔系统尺寸的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信