A new hybrid conjugate gradient algorithm for unconstrained optimization

IF 0.6 Q3 MATHEMATICS
I. Hafaidia, H. Guebbai, M. Al-Baali, M. Ghiat
{"title":"A new hybrid conjugate gradient algorithm for unconstrained optimization","authors":"I. Hafaidia, H. Guebbai, M. Al-Baali, M. Ghiat","doi":"10.35634/vm230211","DOIUrl":null,"url":null,"abstract":"It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.
一种新的无约束优化混合共轭梯度算法
众所周知,共轭梯度法是求解大规模无约束非线性优化问题的有效方法。本文考虑结合两种共轭梯度方法的最佳特征。特别地,我们在DY (Dai-Yuan)和HZ (Hager-Zhang)方法杂交的基础上,提出了一种新的共轭梯度方法。混合参数的选择使所提方法满足共轭性和充分下降条件。结果表明,新方法保持了上述两种方法的全局收敛性。本文描述了一组标准测试问题的数值结果。结果表明,在大多数情况下,该方法的性能优于DY和HZ方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信