{"title":"Technology for Optical Co-Packaging","authors":"Y. Taira","doi":"10.23919/PanPacific48324.2020.9059547","DOIUrl":null,"url":null,"abstract":"Recent advancement of information and communication technology requires high-bandwidth data transmission. Signal transmission using optical fibers is widely used because of its extremely large signal bandwidth and length product. Since the signals in VLSIs are electrical, there is always a need for EO/OE converters in a form of optical transceiver/receiver. As the required I/O bandwidth to/from VLSIs such as switch chips and CPUs increases, conventional VLSI packaging faces the I/O bandwidth bottleneck. Optical co-packaging or optical transceivers on the package is the solution, where high bandwidth data I/O is carried out without using the bottom I/O channels of the package module. Although early examples of optical co-packaging relied on a package-on-package approach where packaged optical transceivers are socket mounted on a VLSI package, the whole package needs to be re-evaluated to support the volume demand to enable wide use of optical co-packaging such as for large-scale data-centers and 5G network. The assembly process and the long-term reliability of the components are some of the key matrices. The technology options will be discussed to realize optical co-packaging in terms of design materials and processing.","PeriodicalId":6691,"journal":{"name":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PanPacific48324.2020.9059547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Recent advancement of information and communication technology requires high-bandwidth data transmission. Signal transmission using optical fibers is widely used because of its extremely large signal bandwidth and length product. Since the signals in VLSIs are electrical, there is always a need for EO/OE converters in a form of optical transceiver/receiver. As the required I/O bandwidth to/from VLSIs such as switch chips and CPUs increases, conventional VLSI packaging faces the I/O bandwidth bottleneck. Optical co-packaging or optical transceivers on the package is the solution, where high bandwidth data I/O is carried out without using the bottom I/O channels of the package module. Although early examples of optical co-packaging relied on a package-on-package approach where packaged optical transceivers are socket mounted on a VLSI package, the whole package needs to be re-evaluated to support the volume demand to enable wide use of optical co-packaging such as for large-scale data-centers and 5G network. The assembly process and the long-term reliability of the components are some of the key matrices. The technology options will be discussed to realize optical co-packaging in terms of design materials and processing.