Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations

Yang He, Yajuan Sun, H. Qin, Jian Liu
{"title":"Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations","authors":"Yang He, Yajuan Sun, H. Qin, Jian Liu","doi":"10.1063/1.4962573","DOIUrl":null,"url":null,"abstract":"In this paper, we develop Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations by applying conforming finite element methods in space and splitting methods in time. For the spatial discretisation, the criteria for choosing finite element spaces are presented such that the semi-discrete system possesses a discrete non-canonical Poisson structure. We apply a Hamiltonian splitting method to the semi-discrete system in time, then the resulting algorithm is Poisson preserving and explicit. The conservative properties of the algorithm guarantee the efficient and accurate numerical simulation of the Vlasov-Maxwell equations over long-time.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4962573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

In this paper, we develop Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations by applying conforming finite element methods in space and splitting methods in time. For the spatial discretisation, the criteria for choosing finite element spaces are presented such that the semi-discrete system possesses a discrete non-canonical Poisson structure. We apply a Hamiltonian splitting method to the semi-discrete system in time, then the resulting algorithm is Poisson preserving and explicit. The conservative properties of the algorithm guarantee the efficient and accurate numerical simulation of the Vlasov-Maxwell equations over long-time.
Vlasov-Maxwell方程的哈密顿粒子胞内方法
本文采用空间上的一致性有限元方法和时间上的分裂方法,建立了求解Vlasov-Maxwell方程的哈密顿粒子单元法。对于空间离散化,给出了选择有限元空间的准则,使得半离散系统具有离散的非正则泊松结构。我们对半离散系统在时间上应用哈密顿分裂方法,得到的算法是泊松保持的和显式的。该算法的保守性保证了对Vlasov-Maxwell方程组的长时间高效、准确的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信