Method for finding a solution to a linear nonstationary interval ОDЕ system

IF 0.3 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Аlexander V. Fominyh
{"title":"Method for finding a solution to a linear nonstationary interval ОDЕ system","authors":"Аlexander V. Fominyh","doi":"10.21638/11701/spbu10.2021.205","DOIUrl":null,"url":null,"abstract":"The article analyses a linear nonstationary interval system of ordinary differential equations so that the elements of the matrix of the system are the intervals with the known lower and upper bounds. The system is defined on the known finite time interval. It is required to construct a trajectory, which brings this system from the given initial position to the given final state. The original problem is reduced to finding a solution of the differential inclusion of a special form with the fixed right endpoint. With the help of support functions, this problem is reduced to minimizing a functional in the space of piecewise continuous functions. Under a natural additional assumption, this functional is Gateaux differentiable. For the functional, Gateaux gradient is found, necessary and sufficient conditions for the minimum are obtained. Оn the basis of these conditions, the method of the steepest descent is applied to the original problem. Some examples illustrate the constructed algorithm realization.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"66 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2021.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

The article analyses a linear nonstationary interval system of ordinary differential equations so that the elements of the matrix of the system are the intervals with the known lower and upper bounds. The system is defined on the known finite time interval. It is required to construct a trajectory, which brings this system from the given initial position to the given final state. The original problem is reduced to finding a solution of the differential inclusion of a special form with the fixed right endpoint. With the help of support functions, this problem is reduced to minimizing a functional in the space of piecewise continuous functions. Under a natural additional assumption, this functional is Gateaux differentiable. For the functional, Gateaux gradient is found, necessary and sufficient conditions for the minimum are obtained. Оn the basis of these conditions, the method of the steepest descent is applied to the original problem. Some examples illustrate the constructed algorithm realization.
求解线性非平稳区间ОDЕ系统的方法
本文分析了一类线性非平稳区间常微分方程系统,使得该系统的矩阵元素为已知下界和上界的区间。系统定义在已知的有限时间区间上。要求构造一个轨迹,使系统从给定的初始位置到达给定的最终状态。原来的问题被简化为寻找具有固定右端点的特殊形式的微分包含的解。在支持函数的帮助下,这个问题被简化为在分段连续函数空间中最小化一个泛函。在一个自然附加的假设下,这个泛函是可微的。对于泛函,找到了Gateaux梯度,得到了最小值的充分必要条件。Оn在这些条件的基础上,将最陡下降法应用于原问题。一些实例说明了构造的算法实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
50.00%
发文量
10
期刊介绍: The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信