Shortest path to a segment and quickest visibility queries

IF 0.4 Q4 MATHEMATICS
V. Polishchuk, E. Arkin, A. Efrat, Christian Knauer, Joseph B. M. Mitchell, G. Rote, Lena Schlipf, Topi Talvitie
{"title":"Shortest path to a segment and quickest visibility queries","authors":"V. Polishchuk, E. Arkin, A. Efrat, Christian Knauer, Joseph B. M. Mitchell, G. Rote, Lena Schlipf, Topi Talvitie","doi":"10.20382/jocg.v7i2a5","DOIUrl":null,"url":null,"abstract":"We show how to preprocess a polygonal domain with a fixed starting point $s$ in order to answer efficiently the following queries: Given a point $q$, how should one move from $s$ in order to see $q$ as soon as possible? This query resembles the well-known shortest-path-to-a-point query, except that the latter asks for the fastest way to reach  $q$, instead of seeing it. Our solution methods include a data structure for a different generalization of shortest-path-to-a-point queries, which may be of independent interest: to report efficiently a shortest path from $s$ to a query segment  in the domain.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"6 1","pages":"658-673"},"PeriodicalIF":0.4000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i2a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

We show how to preprocess a polygonal domain with a fixed starting point $s$ in order to answer efficiently the following queries: Given a point $q$, how should one move from $s$ in order to see $q$ as soon as possible? This query resembles the well-known shortest-path-to-a-point query, except that the latter asks for the fastest way to reach  $q$, instead of seeing it. Our solution methods include a data structure for a different generalization of shortest-path-to-a-point queries, which may be of independent interest: to report efficiently a shortest path from $s$ to a query segment  in the domain.
到段的最短路径和最快的可见性查询
我们展示了如何预处理一个具有固定起始点$s$的多边形域,以便有效地回答以下问题:给定一个点$q$,如何从$s$移动以便尽快看到$q$ ?这个查询类似于众所周知的到点最短路径查询,不同之处在于,后者要求的是到达$q$的最快方式,而不是查看它。我们的解决方案方法包括一个数据结构,用于不同的最短路径到点查询的泛化,这可能是独立的兴趣:有效地报告从$s$到域内查询段的最短路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信