S. A. Nadi, Alaaeldin Gad, F. Lentz, Y. Augarten, K. Bittkau, A. Lambertz, Do Yun Kim, Li Ding, A. Wrigley, U. Rau, K. Ding
{"title":"Efficient light trapping in silicon heterojunction solar cells via nanoimprint periodic texturing","authors":"S. A. Nadi, Alaaeldin Gad, F. Lentz, Y. Augarten, K. Bittkau, A. Lambertz, Do Yun Kim, Li Ding, A. Wrigley, U. Rau, K. Ding","doi":"10.1109/PVSC.2018.8547746","DOIUrl":null,"url":null,"abstract":"The surface patterning of Si heterojunction solar cells is of key importance to enhance the light trapping properties and enable high efficiencies of the emerging thin crystalline silicon solar cells. Herein, periodic inverted pyramids with different periodicity patterns were fabricated by nanoimprint lithography in combination with dry- and wetetching techniques. The impact of their periodicity on the light trapping properties was studied by measuring their reflectance and photoluminescence properties. The inverted pyramids with 700 nm periodicity show excellent anti-reflection and selective light-trapping properties.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"159 1","pages":"3062-3064"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The surface patterning of Si heterojunction solar cells is of key importance to enhance the light trapping properties and enable high efficiencies of the emerging thin crystalline silicon solar cells. Herein, periodic inverted pyramids with different periodicity patterns were fabricated by nanoimprint lithography in combination with dry- and wetetching techniques. The impact of their periodicity on the light trapping properties was studied by measuring their reflectance and photoluminescence properties. The inverted pyramids with 700 nm periodicity show excellent anti-reflection and selective light-trapping properties.