XML class outlier detection

G. Manco, E. Masciari
{"title":"XML class outlier detection","authors":"G. Manco, E. Masciari","doi":"10.1145/2351476.2351494","DOIUrl":null,"url":null,"abstract":"XML (eXtensible Markup Language) became in recent years the new standard for data representation and exchange on the WWW. This has resulted in a great need for data cleaning techniques in order to identify outlying data. In this paper, we present a technique for outlier detection that singles out anomalies with respect to a relevant group of objects. We exploit a suitable encoding of XML documents that are encoded as signals of fixed frequency that can be transformed using Fourier Transforms. Outliers are identified by simply looking at the signal spectra. The results show the effectiveness of our approach.","PeriodicalId":93615,"journal":{"name":"Proceedings. International Database Engineering and Applications Symposium","volume":"77 1","pages":"155-164"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Database Engineering and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2351476.2351494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

XML (eXtensible Markup Language) became in recent years the new standard for data representation and exchange on the WWW. This has resulted in a great need for data cleaning techniques in order to identify outlying data. In this paper, we present a technique for outlier detection that singles out anomalies with respect to a relevant group of objects. We exploit a suitable encoding of XML documents that are encoded as signals of fixed frequency that can be transformed using Fourier Transforms. Outliers are identified by simply looking at the signal spectra. The results show the effectiveness of our approach.
XML类离群值检测
近年来,XML(可扩展标记语言)成为WWW上数据表示和交换的新标准。这导致了对数据清理技术的巨大需求,以便识别外围数据。在本文中,我们提出了一种异常检测技术,该技术可以针对一组相关对象挑出异常。我们开发了一种合适的XML文档编码,这些文档被编码为固定频率的信号,可以使用傅里叶变换进行转换。异常值是通过简单地观察信号光谱来识别的。结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信