A sequential reduction method for inference in generalized linear mixed models

Helen E. Ogden
{"title":"A sequential reduction method for inference in generalized linear mixed models","authors":"Helen E. Ogden","doi":"10.1214/15-EJS991","DOIUrl":null,"url":null,"abstract":"The likelihood for the parameters of a generalized linear mixed model involves an integral which may be of very high dimension. Because of this intractability, many approximations to the likelihood have been proposed, but all can fail when the model is sparse, in that there is only a small amount of information available on each random effect. The sequential reduction method described in this paper exploits the dependence structure of the posterior distribution of the random effects to reduce substantially the cost of finding an accurate approximation to the likelihood in models with sparse structure.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/15-EJS991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The likelihood for the parameters of a generalized linear mixed model involves an integral which may be of very high dimension. Because of this intractability, many approximations to the likelihood have been proposed, but all can fail when the model is sparse, in that there is only a small amount of information available on each random effect. The sequential reduction method described in this paper exploits the dependence structure of the posterior distribution of the random effects to reduce substantially the cost of finding an accurate approximation to the likelihood in models with sparse structure.
广义线性混合模型推理的序贯约简方法
广义线性混合模型的参数似然涉及到一个高维的积分。由于这种难治性,人们提出了许多关于似然的近似,但当模型是稀疏的,因为每个随机效应只有少量的可用信息时,所有的似然近似都可能失败。本文描述的顺序约简方法利用随机效应后验分布的依赖结构,大大减少了在具有稀疏结构的模型中寻找准确的似然近似值的代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信