Accurate characterization of random process variations using a robust low-voltage high-sensitivity sensor featuring replica-bias circuit

M. Meterelliyoz, A. Goel, J. Kulkarni, K. Roy
{"title":"Accurate characterization of random process variations using a robust low-voltage high-sensitivity sensor featuring replica-bias circuit","authors":"M. Meterelliyoz, A. Goel, J. Kulkarni, K. Roy","doi":"10.1109/ISSCC.2010.5433991","DOIUrl":null,"url":null,"abstract":"Accurate and fast measurement and characterization of random threshold voltage (Vth) fluctuations is crucial in process optimization and yield learning, particularly for matching critical transistors such as SRAMs, sense amplifiers, differential amplifiers, etc. Traditional methods in which multiplexed devices under test (DUTs) are characterized using accurate current measurements require extensive data analysis [1–3]. A sense-amplifier based measurement method presented in [4] provides limited statistical data since it can measure the mismatch between only two devices. Recently, a digital array based technique is proposed in [5] with limited sensitivity. Finally, a sub-threshold technique presented in [6] provides high sensitivity but lacks on-chip calibration. This paper presents a low voltage, high sensitivity random process variations sensor utilizing an on-chip calibration circuit for improved accuracy. Moreover, the proposed sensor features a replica bias circuit which compensates global process-voltage-temperature (PVT) variations and maintains sensitivity for robust operation.","PeriodicalId":6418,"journal":{"name":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","volume":"22 1","pages":"186-187"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Solid-State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2010.5433991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Accurate and fast measurement and characterization of random threshold voltage (Vth) fluctuations is crucial in process optimization and yield learning, particularly for matching critical transistors such as SRAMs, sense amplifiers, differential amplifiers, etc. Traditional methods in which multiplexed devices under test (DUTs) are characterized using accurate current measurements require extensive data analysis [1–3]. A sense-amplifier based measurement method presented in [4] provides limited statistical data since it can measure the mismatch between only two devices. Recently, a digital array based technique is proposed in [5] with limited sensitivity. Finally, a sub-threshold technique presented in [6] provides high sensitivity but lacks on-chip calibration. This paper presents a low voltage, high sensitivity random process variations sensor utilizing an on-chip calibration circuit for improved accuracy. Moreover, the proposed sensor features a replica bias circuit which compensates global process-voltage-temperature (PVT) variations and maintains sensitivity for robust operation.
使用具有复制偏置电路的鲁棒低压高灵敏度传感器精确表征随机过程变化
准确、快速地测量和表征随机阈值电压(Vth)波动对于工艺优化和良率学习至关重要,特别是对于匹配关键晶体管,如sram、感测放大器、差分放大器等。使用精确的电流测量来表征多路复用被测器件(dut)的传统方法需要大量的数据分析[1-3]。[4]中提出的基于传感器放大器的测量方法提供了有限的统计数据,因为它只能测量两个器件之间的不匹配。最近,[5]提出了一种基于数字阵列的有限灵敏度技术。最后,在[6]中提出的亚阈值技术提供了高灵敏度,但缺乏片上校准。本文提出了一种低电压、高灵敏度随机过程变化传感器,利用片上校准电路提高了精度。此外,所提出的传感器具有一个复制偏置电路,补偿全局过程电压-温度(PVT)变化,并保持灵敏度,以保证鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信