{"title":"Stain Etching and Elemental Composition of Nanostructured Silicon","authors":"M. Melnichenko, K. Svezhentsova","doi":"10.1109/NAP51477.2020.9309658","DOIUrl":null,"url":null,"abstract":"Nanostructured silicon layers were obtained by stain etching (chemical etching) of initial and textured monocrystalline silicon. The surface morphology of nanostructured silicon was studied using a scanning electron microscope and a scanning tunneling microscope. The ratio of chemical elements on the surface and at a depth of nanostructured silicon layers was studied by electron Auger spectroscopy. It is shown that depending on the etchant composition and the concentration ratio of its components, there is a significant change in the elemental composition distribution of nanostructured silicon. The latter is crucial for optimizing the formation modes of nanostructured silicon layers with preset properties.","PeriodicalId":6770,"journal":{"name":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","volume":"17 1","pages":"01TFC01-1-01TFC01-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAP51477.2020.9309658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nanostructured silicon layers were obtained by stain etching (chemical etching) of initial and textured monocrystalline silicon. The surface morphology of nanostructured silicon was studied using a scanning electron microscope and a scanning tunneling microscope. The ratio of chemical elements on the surface and at a depth of nanostructured silicon layers was studied by electron Auger spectroscopy. It is shown that depending on the etchant composition and the concentration ratio of its components, there is a significant change in the elemental composition distribution of nanostructured silicon. The latter is crucial for optimizing the formation modes of nanostructured silicon layers with preset properties.