Using Statistical Analysis to Fine-Tune the Results of Knapsack-Based Computational Platform Benchmarking

Kupriyashin Mikhail, Borzunov Georgii, Kupriyashina Natalia
{"title":"Using Statistical Analysis to Fine-Tune the Results of Knapsack-Based Computational Platform Benchmarking","authors":"Kupriyashin Mikhail, Borzunov Georgii, Kupriyashina Natalia","doi":"10.1109/EICONRUS.2019.8657218","DOIUrl":null,"url":null,"abstract":"In previous papers, we composed an algorithmic foundation for computational platform benchmarking of well-known exact algorithms for the Knapsack Problem. We suggested using the run time of these algorithms with fixed inputs as the performance estimates. We then derived a single performance estimate, equally impacted by each of the algorithms. Although this approach makes for a reasonable general-purpose benchmark, equalizing the impact of different algorithms is not completely legitimate, as they have different processing requirements. In this paper, we perform an in-depth analysis of algorithm operational requirements and try to fine-tune the integral estimates to describe special-purpose (e.g. data compression or encipherment/decipherment) platforms more accurately.","PeriodicalId":6748,"journal":{"name":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","volume":"56 1","pages":"1816-1820"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EICONRUS.2019.8657218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In previous papers, we composed an algorithmic foundation for computational platform benchmarking of well-known exact algorithms for the Knapsack Problem. We suggested using the run time of these algorithms with fixed inputs as the performance estimates. We then derived a single performance estimate, equally impacted by each of the algorithms. Although this approach makes for a reasonable general-purpose benchmark, equalizing the impact of different algorithms is not completely legitimate, as they have different processing requirements. In this paper, we perform an in-depth analysis of algorithm operational requirements and try to fine-tune the integral estimates to describe special-purpose (e.g. data compression or encipherment/decipherment) platforms more accurately.
利用统计分析对基于背包的计算平台基准测试结果进行微调
在以前的论文中,我们为背包问题的知名精确算法的计算平台基准测试构建了算法基础。我们建议使用这些算法在固定输入下的运行时间作为性能估计。然后,我们得出了一个单一的性能估计,每个算法的影响都是一样的。尽管这种方法可以提供合理的通用基准,但是均衡不同算法的影响并不完全合理,因为它们具有不同的处理需求。在本文中,我们对算法操作需求进行了深入的分析,并尝试微调积分估计,以更准确地描述特殊用途(例如数据压缩或加密/解密)平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信