Time series analysis of the interdependence among air pollutants

Kuang-Jung Hsu
{"title":"Time series analysis of the interdependence among air pollutants","authors":"Kuang-Jung Hsu","doi":"10.1016/0957-1272(92)90056-X","DOIUrl":null,"url":null,"abstract":"<div><p>A statistical time series analysis was applied to study the interdependence between the primary and secondary pollutants in the Taipei area. Estimations using the vector autoregression model (VAR) indicate that 2 and 4 h time lags are sufficient to represent the observed values at two stations studied. The impulse response functions and variance decompositions of NO, NO<sub>2</sub> and O<sub>3</sub> were derived using the vector moving average representations to examine the significance of one species on others. Influences of photochemistry and transport processes on these air pollutants at different locations were evaluated from the results. This technique may provide a simple tool for preliminary assessment of pollution problems.</p></div>","PeriodicalId":100140,"journal":{"name":"Atmospheric Environment. Part B. Urban Atmosphere","volume":"26 4","pages":"Pages 491-503"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0957-1272(92)90056-X","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment. Part B. Urban Atmosphere","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/095712729290056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

A statistical time series analysis was applied to study the interdependence between the primary and secondary pollutants in the Taipei area. Estimations using the vector autoregression model (VAR) indicate that 2 and 4 h time lags are sufficient to represent the observed values at two stations studied. The impulse response functions and variance decompositions of NO, NO2 and O3 were derived using the vector moving average representations to examine the significance of one species on others. Influences of photochemistry and transport processes on these air pollutants at different locations were evaluated from the results. This technique may provide a simple tool for preliminary assessment of pollution problems.

空气污染物相互依赖的时间序列分析
采用统计时间序列分析方法,探讨台北地区一次与二次污染物的相互依存关系。利用向量自回归模型(VAR)的估计表明,2和4 h的时间滞后足以代表两个站点的观测值。利用矢量移动平均表示,导出了NO、NO2和O3的脉冲响应函数和方差分解,以检验一种物种对其他物种的显著性。根据结果,评价了光化学和输运过程对不同地点空气污染物的影响。这项技术可以为初步评价污染问题提供一个简单的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信