I. Fujiwara, M. Koibuchi, T. Ozaki, Hiroki Matsutani, H. Casanova
{"title":"Augmenting low-latency HPC network with free-space optical links","authors":"I. Fujiwara, M. Koibuchi, T. Ozaki, Hiroki Matsutani, H. Casanova","doi":"10.1109/HPCA.2015.7056049","DOIUrl":null,"url":null,"abstract":"Various network topologies can be used for deploying High Performance Computing (HPC) clusters. The network topology, which connects switches In cabinets on a machine room floor, is typically defined once and for all at system deployment time. For a diverse application workload, there are downsides to having a single wired topology. In this work, we propose using free-space optics (FSO) in large-scale systems so that a diverse application workload can be better supported. A high-density layout of FSO terminals on top of the cabinets is determined that allows line-of-sight communication between arbitrary cabinet pairs. We first show that our proposal reduces both end-to-end network latency and total cable length when compared to a wired topology. We then demonstrate that the use of FSO links improves the embedding/partitioning capabilities of a wired topology. More specifically, we show that a recently proposed random low-latency topology can be augmented with a reasonable number of FSO links to support multiple k-ary n-cube and fat tree embedded topologies. Finally, we investigate power-aware on/off link regulation techniques and show how adding/reconfiguring FSO links leads to both performance and power efficiency improvements.","PeriodicalId":6593,"journal":{"name":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","volume":"5 1","pages":"390-401"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2015.7056049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Various network topologies can be used for deploying High Performance Computing (HPC) clusters. The network topology, which connects switches In cabinets on a machine room floor, is typically defined once and for all at system deployment time. For a diverse application workload, there are downsides to having a single wired topology. In this work, we propose using free-space optics (FSO) in large-scale systems so that a diverse application workload can be better supported. A high-density layout of FSO terminals on top of the cabinets is determined that allows line-of-sight communication between arbitrary cabinet pairs. We first show that our proposal reduces both end-to-end network latency and total cable length when compared to a wired topology. We then demonstrate that the use of FSO links improves the embedding/partitioning capabilities of a wired topology. More specifically, we show that a recently proposed random low-latency topology can be augmented with a reasonable number of FSO links to support multiple k-ary n-cube and fat tree embedded topologies. Finally, we investigate power-aware on/off link regulation techniques and show how adding/reconfiguring FSO links leads to both performance and power efficiency improvements.