Translator of Indonesian Sign Language Video using Convolutional Neural Network with Transfer Learning

Sesilia Shania, Mohammad Farid Naufal, Vincentius Riandaru Prasetyo, Mohd Sanusi Bin Azmi
{"title":"Translator of Indonesian Sign Language Video using Convolutional Neural Network with Transfer Learning","authors":"Sesilia Shania, Mohammad Farid Naufal, Vincentius Riandaru Prasetyo, Mohd Sanusi Bin Azmi","doi":"10.24002/ijis.v5i1.5865","DOIUrl":null,"url":null,"abstract":"\nSign language is a language used to communicate by utilizing gestures and facial expressions. This study focuses on classification of Bahasa Isyarat Indonesia (BISINDO). There are still many people who have difficulty communicating with the deaf people. This study builds video-based translator system using Convolutional Neural Network (CNN) with transfer learning which is commonly used in computer vision especially in image classification. Transfer learning used in this study are a MobileNetV2, ResNet50V2, and Xception. This study uses 11 different commonly used vocabularies in BISINDO. Predictions will be made in real-time scenario using a webcam. In addition, the system given good results in the experiment with an interaction approach between one pair of deaf and normal people. From all the experiments, it was found that the Xception architectures has the best F1 Score of 98.5%. \n","PeriodicalId":34118,"journal":{"name":"Indonesian Journal of Information Systems","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/ijis.v5i1.5865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sign language is a language used to communicate by utilizing gestures and facial expressions. This study focuses on classification of Bahasa Isyarat Indonesia (BISINDO). There are still many people who have difficulty communicating with the deaf people. This study builds video-based translator system using Convolutional Neural Network (CNN) with transfer learning which is commonly used in computer vision especially in image classification. Transfer learning used in this study are a MobileNetV2, ResNet50V2, and Xception. This study uses 11 different commonly used vocabularies in BISINDO. Predictions will be made in real-time scenario using a webcam. In addition, the system given good results in the experiment with an interaction approach between one pair of deaf and normal people. From all the experiments, it was found that the Xception architectures has the best F1 Score of 98.5%.
基于卷积神经网络和迁移学习的印尼语手语视频翻译
手语是一种通过手势和面部表情进行交流的语言。本文主要研究印尼语的分类问题。仍有许多人与聋人沟通有困难。本文利用卷积神经网络(CNN)和迁移学习技术,构建了基于视频的翻译系统。卷积神经网络是计算机视觉特别是图像分类中常用的技术。本研究中使用的迁移学习是MobileNetV2, ResNet50V2和Xception。本研究使用了11种不同的BISINDO常用词汇。将使用网络摄像头在实时场景中进行预测。此外,该系统在一对聋人与正常人的交互实验中取得了良好的效果。从所有实验中发现,异常架构的F1得分最高,达到98.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信