{"title":"Tissue-specific Expression and Splicing of the Rat Polycystic Kidney Disease 1 Gene","authors":"Hui Xu, Jianjun Shen, C. Walker, E. Kleymenova","doi":"10.3109/10425170109084460","DOIUrl":null,"url":null,"abstract":"Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic potentially lethal human disorder and the polycystic kidney disease 1 (Pkdl) gene is accounted for 85-90% of these cases. We have obtained rat Pkdl cDNA sequence and characterized splicing of Pkdl RNA transcripts in normal rat tissues. Our sequence data revealed a high conservation of the Pkdl gene between rat and other species and mapped rat Pkdl to chromosome 10 in “tail-to-tail” orientation to the tuberous sclerosis 2 (Tsc2) gene. Pkdl was found ubiquitously expressed in the normal rat tissues and the brain had a complex pattern of exon 12 splicing. A novel splicing variant lacking entire exon 31, which occurs in rat and mouse but not in humans, was also identified. As the rat appears to be a valuable model for investigating polycystic kidney disease, the characterization of the rat Pkdl gene will help facilitate future studies to elucidate the molecular mechanisms of cystogenesis in this animal model.","PeriodicalId":11381,"journal":{"name":"DNA Sequence","volume":"18 1","pages":"361 - 366"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Sequence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10425170109084460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic potentially lethal human disorder and the polycystic kidney disease 1 (Pkdl) gene is accounted for 85-90% of these cases. We have obtained rat Pkdl cDNA sequence and characterized splicing of Pkdl RNA transcripts in normal rat tissues. Our sequence data revealed a high conservation of the Pkdl gene between rat and other species and mapped rat Pkdl to chromosome 10 in “tail-to-tail” orientation to the tuberous sclerosis 2 (Tsc2) gene. Pkdl was found ubiquitously expressed in the normal rat tissues and the brain had a complex pattern of exon 12 splicing. A novel splicing variant lacking entire exon 31, which occurs in rat and mouse but not in humans, was also identified. As the rat appears to be a valuable model for investigating polycystic kidney disease, the characterization of the rat Pkdl gene will help facilitate future studies to elucidate the molecular mechanisms of cystogenesis in this animal model.