On the Impact of Data Selection when Applying Machine Learning in Abstract Argumentation

Q3 Arts and Humanities
Comma Pub Date : 2022-01-01 DOI:10.3233/FAIA220155
Isabelle Kuhlmann, Thorsten Wujek, Matthias Thimm
{"title":"On the Impact of Data Selection when Applying Machine Learning in Abstract Argumentation","authors":"Isabelle Kuhlmann, Thorsten Wujek, Matthias Thimm","doi":"10.3233/FAIA220155","DOIUrl":null,"url":null,"abstract":". We examine the impact of both training and test data selection in ma- chine learning applications for abstract argumentation, in terms of prediction accuracy and generalizability. For that, we first review previous studies from a data- centric perspective and conduct some experiments to back up our analysis. We further present a novel algorithm to generate particularly challenging argumentation frameworks wrt. the task of deciding skeptical acceptability under preferred semantics. Moreover, we investigate graph-theoretical aspects of the existing datasets and perform some experiments which show that some simple properties (such as in-degree and out-degree of an argument) are already quite strong indicators of whether or not an argument is skeptically accepted under preferred semantics.","PeriodicalId":36616,"journal":{"name":"Comma","volume":"38 1","pages":"224-235"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA220155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 2

Abstract

. We examine the impact of both training and test data selection in ma- chine learning applications for abstract argumentation, in terms of prediction accuracy and generalizability. For that, we first review previous studies from a data- centric perspective and conduct some experiments to back up our analysis. We further present a novel algorithm to generate particularly challenging argumentation frameworks wrt. the task of deciding skeptical acceptability under preferred semantics. Moreover, we investigate graph-theoretical aspects of the existing datasets and perform some experiments which show that some simple properties (such as in-degree and out-degree of an argument) are already quite strong indicators of whether or not an argument is skeptically accepted under preferred semantics.
在抽象论证中应用机器学习时数据选择的影响
. 我们研究了训练和测试数据选择在机器学习应用中对抽象论证的影响,在预测准确性和概括性方面。为此,我们首先从数据中心的角度回顾以往的研究,并进行一些实验来支持我们的分析。我们进一步提出了一种新的算法来生成特别具有挑战性的论证框架。在首选语义下决定怀疑可接受性的任务。此外,我们研究了现有数据集的图理论方面,并进行了一些实验,这些实验表明,一些简单的属性(如参数的内度和外度)已经是一个参数是否在首选语义下被怀疑接受的强有力的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comma
Comma Arts and Humanities-Conservation
CiteScore
0.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信