Combining Observational and Experimental Data Using First-stage Covariates

George Gui
{"title":"Combining Observational and Experimental Data Using First-stage Covariates","authors":"George Gui","doi":"10.2139/ssrn.3662061","DOIUrl":null,"url":null,"abstract":"Randomized controlled trials generate experimental variation that can credibly identify causal effects, but often suffer from limited scale, while observational datasets are large, but often violate desired identification assumptions. To improve estimation efficiency, I propose a method that combines experimental and observational datasets when 1) units from these two datasets are sampled from the same population and 2) some characteristics of these units are observed. I show that if these characteristics can partially explain treatment assignment in the observational data, they can be used to derive moment restrictions that, in combination with the experimental data, improve estimation efficiency. I outline three estimators (weighting, shrinkage, or GMM) for implementing this strategy, and show that my methods can reduce variance by up to 50% in typical experimental designs; therefore, only half of the experimental sample is required to attain the same statistical precision. If researchers are allowed to design experiments differently, I show that they can further improve the precision by directly leveraging this correlation between characteristics and assignment. I apply the method to a search listing dataset from Expedia that studies the causal effect of search rankings, and show that my method can substantially improve the precision.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3662061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Randomized controlled trials generate experimental variation that can credibly identify causal effects, but often suffer from limited scale, while observational datasets are large, but often violate desired identification assumptions. To improve estimation efficiency, I propose a method that combines experimental and observational datasets when 1) units from these two datasets are sampled from the same population and 2) some characteristics of these units are observed. I show that if these characteristics can partially explain treatment assignment in the observational data, they can be used to derive moment restrictions that, in combination with the experimental data, improve estimation efficiency. I outline three estimators (weighting, shrinkage, or GMM) for implementing this strategy, and show that my methods can reduce variance by up to 50% in typical experimental designs; therefore, only half of the experimental sample is required to attain the same statistical precision. If researchers are allowed to design experiments differently, I show that they can further improve the precision by directly leveraging this correlation between characteristics and assignment. I apply the method to a search listing dataset from Expedia that studies the causal effect of search rankings, and show that my method can substantially improve the precision.
使用第一阶段协变量结合观测和实验数据
随机对照试验产生的实验变异能够可靠地确定因果关系,但往往受到规模的限制,而观察数据集很大,但往往违反预期的识别假设。为了提高估计效率,我提出了一种将实验数据集和观测数据集结合起来的方法:1)从同一总体中采样这两个数据集的单位,2)观察这些单位的一些特征。我表明,如果这些特征可以部分解释观测数据中的处理分配,它们可以用来推导力矩限制,结合实验数据,提高估计效率。我概述了实施这一策略的三个估计器(加权、收缩或GMM),并表明我的方法可以在典型的实验设计中减少高达50%的方差;因此,只需要一半的实验样本就可以达到相同的统计精度。如果允许研究人员以不同的方式设计实验,我表明他们可以通过直接利用特征和分配之间的这种相关性来进一步提高精度。我将该方法应用于来自Expedia的搜索列表数据集,该数据集研究了搜索排名的因果关系,结果表明我的方法可以大大提高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信