Modeling steep slope devices: From circuits to architectures

Karthik Swaminathan, M. Kim, Nandhini Chandramoorthy, B. Sedighi, Robert Perricone, J. Sampson, N. Vijaykrishnan
{"title":"Modeling steep slope devices: From circuits to architectures","authors":"Karthik Swaminathan, M. Kim, Nandhini Chandramoorthy, B. Sedighi, Robert Perricone, J. Sampson, N. Vijaykrishnan","doi":"10.7873/DATE.2014.149","DOIUrl":null,"url":null,"abstract":"Steep Slope devices, with Heterojunction Tunnel FETs (TFETs) in particular, have been proposed as a viable solution to overcome the subthreshold slope limitation in existing CMOS technology and achieve ultra-low voltage operation with acceptable performance. However, state-of-the-art FinFET technologies continue to demonstrate superior performance than steep slope devices in application domains demanding peak single threaded performance. In this context, we examine different computing paradigms where TFET technologies can be used, not just as a `drop in' replacement, but as an additional parameter to augment the architectural design space. This greatly widens the scope of optimizations for performance and power. We investigate the tradeoffs between device and architectures in general purpose processors when performance, power and temperature are individually constrained. We also synthesize examples of domain-specific accelerators used in computer vision using in-house TFET standard cell libraries to demonstrate the energy benefits of designing TFET-based accelerators. We demonstrate that synthesizing these accelerators using TFETs reduces energy by over 6X in comparison to an equivalent iso-voltage CMOS-based design and by over 30% in comparison to an iso-performance CMOS design.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Steep Slope devices, with Heterojunction Tunnel FETs (TFETs) in particular, have been proposed as a viable solution to overcome the subthreshold slope limitation in existing CMOS technology and achieve ultra-low voltage operation with acceptable performance. However, state-of-the-art FinFET technologies continue to demonstrate superior performance than steep slope devices in application domains demanding peak single threaded performance. In this context, we examine different computing paradigms where TFET technologies can be used, not just as a `drop in' replacement, but as an additional parameter to augment the architectural design space. This greatly widens the scope of optimizations for performance and power. We investigate the tradeoffs between device and architectures in general purpose processors when performance, power and temperature are individually constrained. We also synthesize examples of domain-specific accelerators used in computer vision using in-house TFET standard cell libraries to demonstrate the energy benefits of designing TFET-based accelerators. We demonstrate that synthesizing these accelerators using TFETs reduces energy by over 6X in comparison to an equivalent iso-voltage CMOS-based design and by over 30% in comparison to an iso-performance CMOS design.
陡坡设备建模:从电路到架构
陡坡器件,特别是异质结隧道场效应管(tfet),已被提出作为克服现有CMOS技术中亚阈值斜率限制的可行解决方案,并实现具有可接受性能的超低电压工作。然而,在要求峰值单线程性能的应用领域,最先进的FinFET技术继续表现出比陡坡器件更好的性能。在这种情况下,我们研究了不同的计算范式,其中可以使用ttfet技术,不仅仅是作为“偶然”的替代品,而是作为增加架构设计空间的附加参数。这极大地扩大了性能和功率优化的范围。我们研究了在性能、功率和温度单独受限的情况下,通用处理器中器件和架构之间的权衡。我们还综合了在计算机视觉中使用的特定领域加速器的例子,使用内部的TFET标准单元库来演示设计基于TFET的加速器的能量效益。我们证明,与等效的等电压CMOS设计相比,使用tfet合成这些加速器可减少6倍以上的能量,与等性能CMOS设计相比,可减少30%以上的能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信