Jia-yang Chen, Y. Sua, Zitong Zhao, Mo Li, Yu-Ping Huang
{"title":"On-Chip Demonstration of Interaction-free Quantum Switching","authors":"Jia-yang Chen, Y. Sua, Zitong Zhao, Mo Li, Yu-Ping Huang","doi":"10.1364/NLO.2017.NM2A.5","DOIUrl":null,"url":null,"abstract":"Quantum Zeno blockade allows all-optical switching in a counterintuitive “interaction-free” manner. Using a lithium-niobate microdisk cavity nanofabricated on chip, we have observed phase matched sum-frequency generation and interaction-free switching between optical pulses in two tightly confined whispering-gallery modes. We have also verified that our device is suitable for nonlinear operations in a single-photon regime. Our results point to a scalable, chip-integrated platform for nonlinear optics extendable to the quantum regime.","PeriodicalId":42828,"journal":{"name":"Nonlinear Optics Quantum Optics-Concepts in Modern Optics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Optics Quantum Optics-Concepts in Modern Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/NLO.2017.NM2A.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum Zeno blockade allows all-optical switching in a counterintuitive “interaction-free” manner. Using a lithium-niobate microdisk cavity nanofabricated on chip, we have observed phase matched sum-frequency generation and interaction-free switching between optical pulses in two tightly confined whispering-gallery modes. We have also verified that our device is suitable for nonlinear operations in a single-photon regime. Our results point to a scalable, chip-integrated platform for nonlinear optics extendable to the quantum regime.
期刊介绍:
Nonlinear Optics and Quantum Optics publishes primary papers reporting original research, review articles and rapid communications. The journal is divided into four main sections: 1. Principles: covering studies into the fundamental theoretical understanding of the origins and mechanisms of nonlinear optical processes; theoretical studies of application of controlled optical field to quantum information processing including quantum communication and computation and fundamental problems of quantum mechanics related to quantum information processing.