Evaluating Bayesian Knowledge Tracing for Estimating Learner Proficiency and Guiding Learner Behavior

Shreyansh P. Bhatt, Jinjin Zhao, Candace Thille, D. Zimmaro, Neelesh Gattani
{"title":"Evaluating Bayesian Knowledge Tracing for Estimating Learner Proficiency and Guiding Learner Behavior","authors":"Shreyansh P. Bhatt, Jinjin Zhao, Candace Thille, D. Zimmaro, Neelesh Gattani","doi":"10.1145/3386527.3406746","DOIUrl":null,"url":null,"abstract":"Open navigation online learning systems allow learners to choose the next learning activity. These systems can be instrumented to provide learners with feedback to help them choose the next learning activity. One type of feedback is providing an estimate of the learner's current skill proficiency. A learner can then choose to skip the remaining learning activities for that skill after achieving proficiency in that skill. In this paper, we investigate whether predicting proficiency and communicating it to learners can save time for learners within a course. We evaluate the accuracy of the BKT based proficiency pre- diction framework for learner's proficiency prediction which considers one attempt per question. We extend the proficiency prediction framework to include multiple attempts at individual questions and show that it is more accurate in proficiency prediction than BKT based proficiency prediction framework. We discuss the potential implications of attempt enhanced framework on the learners' behavior for open navigation on- line learning systems.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3406746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Open navigation online learning systems allow learners to choose the next learning activity. These systems can be instrumented to provide learners with feedback to help them choose the next learning activity. One type of feedback is providing an estimate of the learner's current skill proficiency. A learner can then choose to skip the remaining learning activities for that skill after achieving proficiency in that skill. In this paper, we investigate whether predicting proficiency and communicating it to learners can save time for learners within a course. We evaluate the accuracy of the BKT based proficiency pre- diction framework for learner's proficiency prediction which considers one attempt per question. We extend the proficiency prediction framework to include multiple attempts at individual questions and show that it is more accurate in proficiency prediction than BKT based proficiency prediction framework. We discuss the potential implications of attempt enhanced framework on the learners' behavior for open navigation on- line learning systems.
评估贝叶斯知识追踪对学习者熟练程度的评估及对学习者行为的指导
开放式导航在线学习系统允许学习者选择下一个学习活动。这些系统可以为学习者提供反馈,帮助他们选择下一个学习活动。一种反馈是提供对学习者当前技能熟练程度的估计。学习者可以在熟练掌握该技能后选择跳过剩余的学习活动。在本文中,我们研究预测熟练程度并将其传达给学习者是否可以在课程中节省学习者的时间。我们评估了基于BKT的学习者水平预测框架的准确性,该框架考虑每个问题一次尝试。我们将熟练度预测框架扩展到包含对单个问题的多次尝试,并表明它在熟练度预测方面比基于BKT的熟练度预测框架更准确。我们讨论了尝试增强框架对开放导航在线学习系统中学习者行为的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信