Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN

Diksha Garg, Priyanka Gupta, Pankaj Malhotra, L. Vig, Gautam M. Shroff
{"title":"Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN","authors":"Diksha Garg, Priyanka Gupta, Pankaj Malhotra, L. Vig, Gautam M. Shroff","doi":"10.1145/3331184.3331322","DOIUrl":null,"url":null,"abstract":"Recent advances in sequence-aware approaches for session-based recommendation, such as those based on recurrent neural networks, highlight the importance of leveraging sequential information from a session while making recommendations. Further, a session based k-nearest-neighbors approach (SKNN) has proven to be a strong baseline for session-based recommendations. However, SKNN does not take into account the readily available sequential and temporal information from sessions. In this work, we propose Sequence and Time Aware Neighborhood (STAN), with vanilla SKNN as its special case. STAN takes into account the following factors for making recommendations: i) position of an item in the current session, ii) recency of a past session w.r.t. to the current session, and iii) position of a recommendable item in a neighboring session. The importance of above factors for a specific application can be adjusted via controllable decay factors. Despite being simple, intuitive and easy to implement, empirical evaluation on three real-world datasets shows that STAN significantly improves over SKNN, and is even comparable to the recently proposed state-of-the-art deep learning approaches. Our results suggest that STAN can be considered as a strong baseline for evaluating session-based recommendation algorithms in future.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

Recent advances in sequence-aware approaches for session-based recommendation, such as those based on recurrent neural networks, highlight the importance of leveraging sequential information from a session while making recommendations. Further, a session based k-nearest-neighbors approach (SKNN) has proven to be a strong baseline for session-based recommendations. However, SKNN does not take into account the readily available sequential and temporal information from sessions. In this work, we propose Sequence and Time Aware Neighborhood (STAN), with vanilla SKNN as its special case. STAN takes into account the following factors for making recommendations: i) position of an item in the current session, ii) recency of a past session w.r.t. to the current session, and iii) position of a recommendable item in a neighboring session. The importance of above factors for a specific application can be adjusted via controllable decay factors. Despite being simple, intuitive and easy to implement, empirical evaluation on three real-world datasets shows that STAN significantly improves over SKNN, and is even comparable to the recently proposed state-of-the-art deep learning approaches. Our results suggest that STAN can be considered as a strong baseline for evaluating session-based recommendation algorithms in future.
基于会话的推荐的序列和时间感知邻域:STAN
基于会话的推荐的序列感知方法的最新进展,例如基于递归神经网络的方法,强调了在进行推荐时利用会话序列信息的重要性。此外,基于会话的k近邻方法(SKNN)已被证明是基于会话的推荐的强大基线。然而,SKNN不考虑从会话中随时可用的顺序和时间信息。在这项工作中,我们提出了序列和时间感知邻域(STAN),并以香草SKNN为特例。STAN在提出建议时会考虑以下因素:i)项目在当前会议中的位置,ii)过去的会议与当前会议的距离,以及iii)可推荐的项目在相邻会议中的位置。上述因素对于特定应用的重要性可以通过可控的衰减因子来调整。尽管简单、直观且易于实现,但对三个现实世界数据集的经验评估表明,STAN比SKNN有显著改善,甚至可以与最近提出的最先进的深度学习方法相媲美。我们的研究结果表明,STAN可以被认为是未来评估基于会话的推荐算法的一个强有力的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信