Parameter identification of bacterial growth bioprocesses using particle swarm optimization

D. Sendrescu, M. Roman
{"title":"Parameter identification of bacterial growth bioprocesses using particle swarm optimization","authors":"D. Sendrescu, M. Roman","doi":"10.1109/ASCC.2013.6606279","DOIUrl":null,"url":null,"abstract":"This paper deals with the off-line parameters identification for a class of bacterial growth bioprocesses using particle swarm optimization (PSO) techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of a complex biotechnological system. The identification problem is formulated as a multi-modal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.","PeriodicalId":6304,"journal":{"name":"2013 9th Asian Control Conference (ASCC)","volume":"67 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th Asian Control Conference (ASCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASCC.2013.6606279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper deals with the off-line parameters identification for a class of bacterial growth bioprocesses using particle swarm optimization (PSO) techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of a complex biotechnological system. The identification problem is formulated as a multi-modal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.
基于粒子群优化的细菌生长生物过程参数辨识
本文研究了用粒子群优化(PSO)技术对一类细菌生长生物过程进行离线参数辨识。粒子群算法是一种较新的启发式算法,在解决复杂优化问题方面取得了很好的效果。本文将粒子群算法的一些变体用于复杂生物技术系统的参数估计。将辨识问题表述为一个高维的多模态数值优化问题。通过数值仿真分析了该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信