A SegNet Based Image Enhancement Technique for Air-Tissue Boundary Segmentation in Real-Time Magnetic Resonance Imaging Video

Renuka Mannem, Valliappan Ca, P. Ghosh
{"title":"A SegNet Based Image Enhancement Technique for Air-Tissue Boundary Segmentation in Real-Time Magnetic Resonance Imaging Video","authors":"Renuka Mannem, Valliappan Ca, P. Ghosh","doi":"10.1109/NCC.2019.8732257","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new technique for segmentation of the Air-Tissue Boundaries (ATBs) in the upper airway of the vocal tract in the midsagittal plane of the realtime Magnetic Resonance Imaging (rtMRI) videos. The proposed technique uses a segmentation using Fisher-discriminant measure (SFDM) scheme. The paper introduces an image enhancement technique using semantic segmentation in the preprocessing of the rtMRI frames before ATB prediction. We use a deep convolutional encoder-decoder architecture (SegNet) for semantic segmentation of the rtMRI images. The paper examines the significance of the preprocessing before ATB prediction by implementing the SFDM approach with different preprocessing techniques. Experiments with 5779 rtMRI video frames from four subjects demonstrate that using the semantic segmentation based image enhancement of rtMRI frames, the performance of the SFDM approach is improved compared to the other preprocessing approaches. Experiment results also show that the proposed approach yields 8.6% less error in ATB prediction compared with a semi-supervised grid based baseline segmentation approach.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"18 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we propose a new technique for segmentation of the Air-Tissue Boundaries (ATBs) in the upper airway of the vocal tract in the midsagittal plane of the realtime Magnetic Resonance Imaging (rtMRI) videos. The proposed technique uses a segmentation using Fisher-discriminant measure (SFDM) scheme. The paper introduces an image enhancement technique using semantic segmentation in the preprocessing of the rtMRI frames before ATB prediction. We use a deep convolutional encoder-decoder architecture (SegNet) for semantic segmentation of the rtMRI images. The paper examines the significance of the preprocessing before ATB prediction by implementing the SFDM approach with different preprocessing techniques. Experiments with 5779 rtMRI video frames from four subjects demonstrate that using the semantic segmentation based image enhancement of rtMRI frames, the performance of the SFDM approach is improved compared to the other preprocessing approaches. Experiment results also show that the proposed approach yields 8.6% less error in ATB prediction compared with a semi-supervised grid based baseline segmentation approach.
基于分段网的实时磁共振成像视频空气组织边界分割图像增强技术
本文提出了一种实时磁共振成像(rtMRI)视频中矢状面声道上气道空气组织边界(ATBs)分割的新技术。该技术采用Fisher-discriminant (SFDM)分割方法。介绍了一种基于语义分割的rtMRI图像增强技术。我们使用深度卷积编码器-解码器架构(SegNet)对rtMRI图像进行语义分割。通过采用不同的预处理技术实现SFDM方法,探讨了ATB预测前预处理的意义。实验结果表明,采用基于语义分割的rtMRI帧图像增强方法,SFDM方法的性能比其他预处理方法有所提高。实验结果还表明,与基于半监督网格的基线分割方法相比,该方法的ATB预测误差降低了8.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信