Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control

O. Wahyunggoro, N. Saad
{"title":"Genetic Algorithm optimization of I/O scales and parameters for FLIC in servomotor control","authors":"O. Wahyunggoro, N. Saad","doi":"10.1109/ISIEA.2009.5356446","DOIUrl":null,"url":null,"abstract":"Direct Current (DC) servomotors are widely used in robot manipulator applications. Servomotors use feedback controller to control either the speed or the position or both. This paper discusses the modeling and simulation of DC servomotor control built using MATLAB/Simulink, and the analysis of controller performance, namely a Fuzzy Logic parallel Integral Controller (FLIC) in which the I/O scale factors, membership functions, and rules of Fuzzy Logic Controller (FLC) and integrator constant are optimized using Genetic Algorithm (GA) sequentially. The singleton fuzzification is used as a fuzzifier: seven membership functions initially for both input and output of fuzzy logic controller. The center average is used as a defuzzifier. The 32-bit-50-population is used in GA for I/O scales, and 21-bit-30-population is used in GA for membership functions. Two control modes are applied in cascaded to the plant: position control and speed control . Simulation results show that FLIC with GA-optimized is the best performance compared to FLIC, FLC, and FLC with GA.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":"73 1","pages":"271-276"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct Current (DC) servomotors are widely used in robot manipulator applications. Servomotors use feedback controller to control either the speed or the position or both. This paper discusses the modeling and simulation of DC servomotor control built using MATLAB/Simulink, and the analysis of controller performance, namely a Fuzzy Logic parallel Integral Controller (FLIC) in which the I/O scale factors, membership functions, and rules of Fuzzy Logic Controller (FLC) and integrator constant are optimized using Genetic Algorithm (GA) sequentially. The singleton fuzzification is used as a fuzzifier: seven membership functions initially for both input and output of fuzzy logic controller. The center average is used as a defuzzifier. The 32-bit-50-population is used in GA for I/O scales, and 21-bit-30-population is used in GA for membership functions. Two control modes are applied in cascaded to the plant: position control and speed control . Simulation results show that FLIC with GA-optimized is the best performance compared to FLIC, FLC, and FLC with GA.
遗传算法优化FLIC在伺服电机控制中的I/O尺度和参数
直流(DC)伺服电机在机器人机械臂中应用广泛。伺服电机使用反馈控制器来控制速度或位置或两者兼而有之。本文讨论了利用MATLAB/Simulink建立的直流伺服电机控制系统的建模与仿真,并对控制器性能进行了分析,即采用遗传算法(GA)对模糊逻辑并行积分控制器(FLC)的I/O比例因子、隶属函数、规则和积分器常数进行了顺序优化。采用单态模糊化作为模糊器:模糊控制器的输入和输出初始为7个隶属函数。中心平均值被用作去模糊器。用于I/O规模的遗传算法使用32-bit-50填充,用于隶属函数的遗传算法使用21-bit-30填充。级联装置采用两种控制方式:位置控制和速度控制。仿真结果表明,与FLIC、FLC和带有遗传算法的FLC相比,带有遗传算法优化的FLC性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信