An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19

Salvador V. Balkus, Joshua Rumbut, Honggang Wang, Hua Fang
{"title":"An Adaptive and Dynamic Biosensor Epidemic Model for COVID-19","authors":"Salvador V. Balkus, Joshua Rumbut, Honggang Wang, Hua Fang","doi":"10.1109/IRI49571.2020.00051","DOIUrl":null,"url":null,"abstract":"The impact of the COVID-19 global pandemic has required governments across the world to develop effective public health policies using epidemiological models. Unfortunately, as a result of limited testing ability, these models often rely on lagged rather than real-time data, and cannot be adapted to small geographies to provide localized forecasts. This study proposes ADBio, a multi-level adaptive and dynamic biosensor-based model that can be used to predict the risk of infection with COVID-19 from the individual level to the county level, providing more timely and accurate estimates of virus exposure at all levels. The model is evaluated using diagnosis simulation based on current COVID-19 cases as well as GPS movement data for Massachusetts and New York, where COVID-19 hotspots had previously been observed. Results demonstrate that lagged testing data is indeed a major detriment to current modeling efforts, and that unlike the standard SEIR model, ADBio is able to adapt to arbitrarily small geographic regions and provide reasonable forecasts of COVID-19 cases. The features of this model enable greater national pandemic preparedness and provide local town and county governments a valuable tool for decision-making during a pandemic.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":"174 1","pages":"306-313"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of the COVID-19 global pandemic has required governments across the world to develop effective public health policies using epidemiological models. Unfortunately, as a result of limited testing ability, these models often rely on lagged rather than real-time data, and cannot be adapted to small geographies to provide localized forecasts. This study proposes ADBio, a multi-level adaptive and dynamic biosensor-based model that can be used to predict the risk of infection with COVID-19 from the individual level to the county level, providing more timely and accurate estimates of virus exposure at all levels. The model is evaluated using diagnosis simulation based on current COVID-19 cases as well as GPS movement data for Massachusetts and New York, where COVID-19 hotspots had previously been observed. Results demonstrate that lagged testing data is indeed a major detriment to current modeling efforts, and that unlike the standard SEIR model, ADBio is able to adapt to arbitrarily small geographic regions and provide reasonable forecasts of COVID-19 cases. The features of this model enable greater national pandemic preparedness and provide local town and county governments a valuable tool for decision-making during a pandemic.
新型冠状病毒肺炎自适应动态生物传感器流行模型
COVID-19全球大流行的影响要求世界各国政府利用流行病学模型制定有效的公共卫生政策。不幸的是,由于测试能力有限,这些模型往往依赖滞后数据而不是实时数据,不能适应小区域以提供局部预测。本研究提出了基于生物传感器的多层次自适应动态ADBio模型,该模型可用于从个体到县域的COVID-19感染风险预测,为各级病毒暴露提供更及时、准确的估计。该模型基于当前COVID-19病例以及马萨诸塞州和纽约州的GPS移动数据进行诊断模拟,这两个地区此前曾观察到COVID-19热点。结果表明,滞后的测试数据确实是当前建模工作的主要损害,与标准的SEIR模型不同,ADBio能够适应任意小的地理区域,并提供合理的COVID-19病例预测。这一模式的特点有助于加强国家大流行防范,并为地方镇县政府在大流行期间提供宝贵的决策工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信