Dynamical behavior of one rational fifth-order difference equation

IF 1 Q1 MATHEMATICS
B. Oğul, D. Şi̇mşek
{"title":"Dynamical behavior of one rational fifth-order difference equation","authors":"B. Oğul, D. Şi̇mşek","doi":"10.15330/cmp.15.1.43-51","DOIUrl":null,"url":null,"abstract":"In this paper, we study the qualitative behavior of the rational recursive equation \\begin{equation*} x_{n+1}=\\frac{x_{n-4}}{\\pm1\\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \\quad n \\in \\mathbb{N}_{0}:=\\{0\\}\\cup\\mathbb N, \\end{equation*} where the initial conditions are arbitrary nonzero real numbers. The main goal of this paper, is to obtain the forms of the solutions of the nonlinear fifth-order difference equations, where the initial conditions are arbitrary positive real numbers. Moreover, we investigate stability, boundedness, oscillation and the periodic character of these solutions. The results presented in this paper improve and extend some corresponding results in the literature.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.1.43-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the qualitative behavior of the rational recursive equation \begin{equation*} x_{n+1}=\frac{x_{n-4}}{\pm1\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \quad n \in \mathbb{N}_{0}:=\{0\}\cup\mathbb N, \end{equation*} where the initial conditions are arbitrary nonzero real numbers. The main goal of this paper, is to obtain the forms of the solutions of the nonlinear fifth-order difference equations, where the initial conditions are arbitrary positive real numbers. Moreover, we investigate stability, boundedness, oscillation and the periodic character of these solutions. The results presented in this paper improve and extend some corresponding results in the literature.
一类有理五阶差分方程的动力学行为
本文研究了初始条件为任意非零实数的有理递推方程\begin{equation*} x_{n+1}=\frac{x_{n-4}}{\pm1\pm x_{n}x_{n-1}x_{n-2}x_{n-3}x_{n-4}}, \quad n \in \mathbb{N}_{0}:=\{0\}\cup\mathbb N, \end{equation*}的定性性质。本文的主要目的是得到初始条件为任意正实数的非线性五阶差分方程的解的形式。此外,我们还研究了这些解的稳定性、有界性、振荡性和周期性。本文的结果改进和推广了文献中一些相应的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信