Gap at 1 for the percolation threshold of Cayley graphs

IF 1.5 Q2 PHYSICS, MATHEMATICAL
C. Panagiotis, Franco Severo
{"title":"Gap at 1 for the percolation threshold of Cayley graphs","authors":"C. Panagiotis, Franco Severo","doi":"10.1214/22-aihp1286","DOIUrl":null,"url":null,"abstract":"We prove that the set of possible values for the percolation threshold $p_c$ of Cayley graphs has a gap at 1 in the sense that there exists $\\varepsilon_0>0$ such that for every Cayley graph $G$ one either has $p_c(G)=1$ or $p_c(G) \\leq 1-\\varepsilon_0$. The proof builds on the new approach of Duminil-Copin, Goswami, Raoufi, Severo&Yadin to the existence of phase transition using the Gaussian free field, combined with the finitary version of Gromov's theorem on the structure of groups of polynomial growth of Breuillard, Green&Tao.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

Abstract

We prove that the set of possible values for the percolation threshold $p_c$ of Cayley graphs has a gap at 1 in the sense that there exists $\varepsilon_0>0$ such that for every Cayley graph $G$ one either has $p_c(G)=1$ or $p_c(G) \leq 1-\varepsilon_0$. The proof builds on the new approach of Duminil-Copin, Goswami, Raoufi, Severo&Yadin to the existence of phase transition using the Gaussian free field, combined with the finitary version of Gromov's theorem on the structure of groups of polynomial growth of Breuillard, Green&Tao.
Cayley图的渗透阈值在1处的间隙
我们证明了Cayley图的渗透阈值$p_c$的可能值集在1处有一个间隙,即存在$\varepsilon_0>0$,使得对于每个Cayley图$G$都有$p_c(G)=1$或$p_c(G) \leq 1-\varepsilon_0$。该证明建立在dumini - copin, Goswami, Raoufi, Severo&Yadin利用高斯自由场证明相变存在性的新方法的基础上,结合Breuillard, Green&Tao关于多项式生长群结构的Gromov定理的有限版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信