{"title":"Steered crowdsensing: incentive design towards quality-oriented place-centric crowdsensing","authors":"Ryoma Kawajiri, M. Shimosaka, H. Kashima","doi":"10.1145/2632048.2636064","DOIUrl":null,"url":null,"abstract":"Crowdsensing technologies are rapidly evolving and are expected to be utilized on commercial applications such as location-based services. Crowdsensing collects sensory data from daily activities of users without burdening users, and the data size is expected to grow into a population scale. However, quality of service is difficult to ensure for commercial use. Incentive design in crowdsensing with monetary rewards or gamifications is, therefore, attracting attention for motivating participants to collect data to increase data quantity. In contrast, we propose Steered Crowdsensing, which controls the incentives of users by using the game elements on location-based services for directly improving the quality of service rather than data size. For a feasibility study of steered crowdsensing, we deployed a crowdsensing system focusing on application scenarios of building processes on wireless indoor localization systems. In the results, steered crowdsensing realized deployments faster than non-steered crowdsensing while having half as many data.","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2632048.2636064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104
Abstract
Crowdsensing technologies are rapidly evolving and are expected to be utilized on commercial applications such as location-based services. Crowdsensing collects sensory data from daily activities of users without burdening users, and the data size is expected to grow into a population scale. However, quality of service is difficult to ensure for commercial use. Incentive design in crowdsensing with monetary rewards or gamifications is, therefore, attracting attention for motivating participants to collect data to increase data quantity. In contrast, we propose Steered Crowdsensing, which controls the incentives of users by using the game elements on location-based services for directly improving the quality of service rather than data size. For a feasibility study of steered crowdsensing, we deployed a crowdsensing system focusing on application scenarios of building processes on wireless indoor localization systems. In the results, steered crowdsensing realized deployments faster than non-steered crowdsensing while having half as many data.