Adria Romero Lopez, Xavier Giró-i-Nieto, Jack Burdick, Oge Marques
{"title":"Skin lesion classification from dermoscopic images using deep learning techniques","authors":"Adria Romero Lopez, Xavier Giró-i-Nieto, Jack Burdick, Oge Marques","doi":"10.2316/P.2017.852-053","DOIUrl":null,"url":null,"abstract":"The recent emergence of deep learning methods for medical image analysis has enabled the development of intelligent medical imaging-based diagnosis systems that can assist the human expert in making better decisions about a patients health. In this paper we focus on the problem of skin lesion classification, particularly early melanoma detection, and present a deep-learning based approach to solve the problem of classifying a dermoscopic image containing a skin lesion as malignant or benign. The proposed solution is built around the VGGNet convolutional neural network architecture and uses the transfer learning paradigm. Experimental results are encouraging: on the ISIC Archive dataset, the proposed method achieves a sensitivity value of 78.66%, which is significantly higher than the current state of the art on that dataset.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"26 1","pages":"49-54"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"278","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 278
Abstract
The recent emergence of deep learning methods for medical image analysis has enabled the development of intelligent medical imaging-based diagnosis systems that can assist the human expert in making better decisions about a patients health. In this paper we focus on the problem of skin lesion classification, particularly early melanoma detection, and present a deep-learning based approach to solve the problem of classifying a dermoscopic image containing a skin lesion as malignant or benign. The proposed solution is built around the VGGNet convolutional neural network architecture and uses the transfer learning paradigm. Experimental results are encouraging: on the ISIC Archive dataset, the proposed method achieves a sensitivity value of 78.66%, which is significantly higher than the current state of the art on that dataset.