Development of Materials Informatics Platform

Y. Orii, S. Hirose, Hiroki Toda, Masakazu Kobayashi
{"title":"Development of Materials Informatics Platform","authors":"Y. Orii, S. Hirose, Hiroki Toda, Masakazu Kobayashi","doi":"10.23919/PanPacific48324.2020.9059449","DOIUrl":null,"url":null,"abstract":"As the use of IT increases importance with big data and AI, the issue of power consumption has been highlighted. Under these circumstances, the development of new materials is more and more important. Materials Informatics (MI) is one of the hottest technologies in the material development field, because of its potential to reduce the time and costs of discovering innovative materials. To achieve this, the key is to collect data that has been accumulated for many years at research institutions and companies, and to make information extracted from the data into knowledge. This article introduces the development of two methods based on AI: the “cognitive approach”, which reads vast amounts of literature information and digitizes data, and the “analytic approach”, which theoretically estimates the structure and physical properties of chemical substances from predictive models.","PeriodicalId":6691,"journal":{"name":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","volume":"35 2","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Pan Pacific Microelectronics Symposium (Pan Pacific)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PanPacific48324.2020.9059449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As the use of IT increases importance with big data and AI, the issue of power consumption has been highlighted. Under these circumstances, the development of new materials is more and more important. Materials Informatics (MI) is one of the hottest technologies in the material development field, because of its potential to reduce the time and costs of discovering innovative materials. To achieve this, the key is to collect data that has been accumulated for many years at research institutions and companies, and to make information extracted from the data into knowledge. This article introduces the development of two methods based on AI: the “cognitive approach”, which reads vast amounts of literature information and digitizes data, and the “analytic approach”, which theoretically estimates the structure and physical properties of chemical substances from predictive models.
材料信息平台的开发
随着大数据和人工智能对信息技术的应用越来越重要,功耗问题也越来越突出。在这种情况下,开发新材料就显得越来越重要。材料信息学(MI)是材料开发领域最热门的技术之一,因为它有可能减少发现创新材料的时间和成本。要做到这一点,关键是收集研究机构和企业多年积累的数据,并将从中提取的信息转化为知识。本文介绍了基于人工智能的两种方法的发展:一种是“认知方法”,它读取大量文献信息并将数据数字化;另一种是“分析方法”,它从预测模型中理论上估计化学物质的结构和物理性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信