MIDIX basis set for the lithium atom: Accurate geometries and atomic partial charges for lithium compounds with minimal computational cost

PhysChemComm Pub Date : 2001-01-01 DOI:10.1039/B105076C
Jason D. Thompson, P. Winget, D. Truhlar
{"title":"MIDIX basis set for the lithium atom: Accurate geometries and atomic partial charges for lithium compounds with minimal computational cost","authors":"Jason D. Thompson, P. Winget, D. Truhlar","doi":"10.1039/B105076C","DOIUrl":null,"url":null,"abstract":"We present a MIDIX basis set for Li that accurately predicts geometries, charge distributions, and partial atomic charges for a test set of compounds at a reasonable cost. MIDIX basis sets, which are also called MIDI!, are heteroatom-polarized split-valence basis sets in which the polarization functions are optimized in order to predict realistic molecular geometries and atomic partial charges. The MIDIX basis set uses the core, inner valence, and outer valence basis functions of the MIDI basis set plus an additional Gaussian basis function. We optimized the p exponent to obtain realistic predictions of geometry, density dipole moments, and Lowdin dipole moments at the Hartree–Fock and hybrid density functional levels of theory, using the mPW1PW91 hybrid density functional for the latter. The MIDIX basis set predicts Hartree–Fock geometries and Hartree–Fock and hybrid density functional Lowdin dipole moments more accurately than either the 3-21G(d) or 6-31G(d) basis set for most of the compounds in our training set. It also predicts more accurate Hartree–Fock and hybrid density functional density dipole moments than the 3-21G(d) basis set. The present results show that the basis set is expected to be very useful for calculating geometries and electrostatic properties of lithium compounds containing H, C, N, O, F, Si, P, S, Cl, Br, and I, especially organolithium and lithium–sulfur compounds.","PeriodicalId":20106,"journal":{"name":"PhysChemComm","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhysChemComm","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/B105076C","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present a MIDIX basis set for Li that accurately predicts geometries, charge distributions, and partial atomic charges for a test set of compounds at a reasonable cost. MIDIX basis sets, which are also called MIDI!, are heteroatom-polarized split-valence basis sets in which the polarization functions are optimized in order to predict realistic molecular geometries and atomic partial charges. The MIDIX basis set uses the core, inner valence, and outer valence basis functions of the MIDI basis set plus an additional Gaussian basis function. We optimized the p exponent to obtain realistic predictions of geometry, density dipole moments, and Lowdin dipole moments at the Hartree–Fock and hybrid density functional levels of theory, using the mPW1PW91 hybrid density functional for the latter. The MIDIX basis set predicts Hartree–Fock geometries and Hartree–Fock and hybrid density functional Lowdin dipole moments more accurately than either the 3-21G(d) or 6-31G(d) basis set for most of the compounds in our training set. It also predicts more accurate Hartree–Fock and hybrid density functional density dipole moments than the 3-21G(d) basis set. The present results show that the basis set is expected to be very useful for calculating geometries and electrostatic properties of lithium compounds containing H, C, N, O, F, Si, P, S, Cl, Br, and I, especially organolithium and lithium–sulfur compounds.
锂原子的MIDIX基础设置:精确的几何形状和锂化合物的原子部分电荷与最小的计算成本
我们为Li提供了一个MIDIX基础集,可以以合理的成本准确地预测化合物测试集的几何形状、电荷分布和部分原子电荷。middix基础集,也叫MIDI!,是杂原子极化分裂价基集,其中极化函数经过优化,以预测实际的分子几何形状和原子部分电荷。MIDIX基集使用MIDI基集的核心、内部价和外部价基函数加上一个额外的高斯基函数。我们优化了p指数,在Hartree-Fock和混合密度泛函的理论水平上获得了几何、密度偶极矩和Lowdin偶极矩的现实预测,使用mPW1PW91混合密度泛函对后者进行了预测。对于我们训练集中的大多数化合物,MIDIX基集比3-21G(d)或6-31G(d)基集更准确地预测Hartree-Fock几何形状以及Hartree-Fock和混合密度函数Lowdin偶极矩。与3-21G(d)基集相比,它还能更准确地预测Hartree-Fock和杂化密度泛函数密度偶极矩。本研究结果表明,该基集有望用于计算含H、C、N、O、F、Si、P、S、Cl、Br和I的锂化合物的几何形状和静电性质,特别是有机锂和锂硫化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信