Identification of Factor Risk Premia

P. Hansen, Maziar Kazemi
{"title":"Identification of Factor Risk Premia","authors":"P. Hansen, Maziar Kazemi","doi":"10.2139/ssrn.3934624","DOIUrl":null,"url":null,"abstract":"This paper a develops novel statistical test of whether individual factor risk premia are identified from return data in multi-factor models. We give a necessary and sufficient condition for population identification of individual risk premia, which we call the kernel-orthogonality condition. This condition is weaker than the standard rank condition commonly assumed for linear factor models. Under misspecification, our condition ensures point identification of the risk premium with minimal pricing error. We show how to test this restriction directly in reduced-rank models. Finally, we apply our test methodology to assess identification of risk premia associated with consumption growth and intermediary leverage.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3934624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper a develops novel statistical test of whether individual factor risk premia are identified from return data in multi-factor models. We give a necessary and sufficient condition for population identification of individual risk premia, which we call the kernel-orthogonality condition. This condition is weaker than the standard rank condition commonly assumed for linear factor models. Under misspecification, our condition ensures point identification of the risk premium with minimal pricing error. We show how to test this restriction directly in reduced-rank models. Finally, we apply our test methodology to assess identification of risk premia associated with consumption growth and intermediary leverage.
因素风险溢价的识别
本文提出了一种新的统计检验方法,用于检验多因素模型中个体因素风险溢价是否能从收益数据中识别出来。给出了个体风险溢价总体识别的一个充分必要条件,称为核正交条件。这个条件弱于线性因子模型通常假定的标准秩条件。在不规范的情况下,我们的条件保证了风险溢价的点识别与最小的定价误差。我们将展示如何在降阶模型中直接测试此限制。最后,我们运用我们的测试方法来评估与消费增长和中介杠杆相关的风险溢价的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信