{"title":"The effect of sodium azide on cell processes in the embryonic barley shoot","authors":"O.W. Pearson , C. Sander, R.A. Nilan","doi":"10.1016/0033-7560(75)90002-2","DOIUrl":null,"url":null,"abstract":"<div><p>Sodium azide has been utilized recently both as an agent for the study of repair of radiation-induced chromosome damage, and as a mutagen in barley caryopses (seeds). However, the effect of this agent on the cell cycle and optimum time of treatment during the cell cycle in these studies is not known. To better understand the effects of sodium azide on the embryonic barley shoot cells, a detailed study of the effect of azide on the cell cycle was conducted.</p><p>Himalaya barley seeds were treated for 2 hr with 10<sup>−4</sup>, 5 × 10<sup>−4</sup>, and 10<sup>−3</sup>M oxygenated sodium azide solutions at pH 3. The principal effect on the cell cycle due to sodium azide treatment was a delay in the initiation of metabolism following germination. This resulted in a uniform delay in the following parameters: mitotic activity, seedling growth, and ATP and DNA syntheses. This delay was interpreted as being due to an ATP deficiency which when alleviated allows the cells to progress normally through mitosis.</p><p>Chromosome damage caused by sodium azide was not reflected in the seedling heights as the reduction in height was due entirely to mitotic delay. No variation occurred in the progression of cells through mitosis between various regions of the shoot within the first 29 hr of germination.</p></div>","PeriodicalId":20794,"journal":{"name":"Radiation Botany","volume":"15 4","pages":"Pages 315-322"},"PeriodicalIF":0.0000,"publicationDate":"1975-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0033-7560(75)90002-2","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Botany","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0033756075900022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Sodium azide has been utilized recently both as an agent for the study of repair of radiation-induced chromosome damage, and as a mutagen in barley caryopses (seeds). However, the effect of this agent on the cell cycle and optimum time of treatment during the cell cycle in these studies is not known. To better understand the effects of sodium azide on the embryonic barley shoot cells, a detailed study of the effect of azide on the cell cycle was conducted.
Himalaya barley seeds were treated for 2 hr with 10−4, 5 × 10−4, and 10−3M oxygenated sodium azide solutions at pH 3. The principal effect on the cell cycle due to sodium azide treatment was a delay in the initiation of metabolism following germination. This resulted in a uniform delay in the following parameters: mitotic activity, seedling growth, and ATP and DNA syntheses. This delay was interpreted as being due to an ATP deficiency which when alleviated allows the cells to progress normally through mitosis.
Chromosome damage caused by sodium azide was not reflected in the seedling heights as the reduction in height was due entirely to mitotic delay. No variation occurred in the progression of cells through mitosis between various regions of the shoot within the first 29 hr of germination.