The fundamental group of the space $\Omega_n(m)$

Q4 Mathematics
A. Paśko
{"title":"The fundamental group of the space $\\Omega_n(m)$","authors":"A. Paśko","doi":"10.15421/242207","DOIUrl":null,"url":null,"abstract":"In the present paper the spaces $\\Omega_n(m)$ are considered. The spaces $\\Omega_n(m)$, introduced in 2018 by A.M. Pasko and Y.O. Orekhova, are the generalization of the spaces $\\Omega_n$ (the space $\\Omega_n(2)$ coincides with $\\Omega_n$). The investigation of homotopy properties of the spaces $\\Omega_n$ has been started by V.I. Ruban in 1985 and followed by V.A. Koshcheev, A.M. Pasko. In particular V.A. Koshcheev has proved that the spaces $\\Omega_n$ are simply connected. We generalized this result proving that all the spaces $\\Omega_n(m)$ are simply connected. In order to prove the simply connectedness of the space $\\Omega_n(m)$ we consider the 1-skeleton of this space. Using 1-cells we form the closed ways that create the fundamental group of the space $\\Omega_n(m)$. Using 2-cells we show that all these closed ways are equivalent to the trivial way. So the fundamental group of the space $\\Omega_n(m)$ is trivial and the space $\\Omega_n(m)$ is simply connected.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"13 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/242207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper the spaces $\Omega_n(m)$ are considered. The spaces $\Omega_n(m)$, introduced in 2018 by A.M. Pasko and Y.O. Orekhova, are the generalization of the spaces $\Omega_n$ (the space $\Omega_n(2)$ coincides with $\Omega_n$). The investigation of homotopy properties of the spaces $\Omega_n$ has been started by V.I. Ruban in 1985 and followed by V.A. Koshcheev, A.M. Pasko. In particular V.A. Koshcheev has proved that the spaces $\Omega_n$ are simply connected. We generalized this result proving that all the spaces $\Omega_n(m)$ are simply connected. In order to prove the simply connectedness of the space $\Omega_n(m)$ we consider the 1-skeleton of this space. Using 1-cells we form the closed ways that create the fundamental group of the space $\Omega_n(m)$. Using 2-cells we show that all these closed ways are equivalent to the trivial way. So the fundamental group of the space $\Omega_n(m)$ is trivial and the space $\Omega_n(m)$ is simply connected.
空间n(m)的基本群
本文考虑了空间$\Omega_n(m)$。空间$\Omega_n(m)$,于2018年由A.M.Pasko和Y.O. Orekhova,是空间$\Omega_n$的泛化(空间$\Omega_n(2)$与$\Omega_n$重合)关于空间$\Omega_n$的同伦性质的研究是由V.I. Ruban在1985年开始的,随后V.A. Koshcheev, A.M.Pasko。特别是V.A. Koshcheev证明了空间$\Omega_n$是单连通的。我们推广了这个结果,证明了所有的空间$\Omega_n(m)$都是单连通的。为了证明空间的简单连通性,我们考虑这个空间的1-骨架。使用1单元格,我们形成闭合的方式来创建空间的基本群$\Omega_n(m)$。我们用2单元格证明了所有这些闭合路径都等价于平凡路径。所以空间n(m)的基本群是平凡的空间n(m)是单连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信