Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space

Pub Date : 2019-07-01 DOI:10.3792/pjaa.95.97
S. Akamine, M. Umehara, Kotaro Yamada
{"title":"Space-like maximal surfaces containing entire null lines in Lorentz-Minkowski 3-space","authors":"S. Akamine, M. Umehara, Kotaro Yamada","doi":"10.3792/pjaa.95.97","DOIUrl":null,"url":null,"abstract":"Consider a surface $S$ immersed in the Lorentz-Minkowski 3-space $\\boldsymbol R^3_1$. A complete light-like line in $\\boldsymbol R^3_1$ is called an entire null line on the surface $S$ in $\\boldsymbol R^3_1$ if it lies on $S$ and consists of only null points with respect to the induced metric. In this paper, we show the existence of embedded space-like maximal graphs containing entire null lines. If such a graph is defined on a convex domain in $\\boldsymbol R^2$, then it must be a light-like plane. Our example is critical in the sense that it is defined on a certain non-convex domain.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/pjaa.95.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Consider a surface $S$ immersed in the Lorentz-Minkowski 3-space $\boldsymbol R^3_1$. A complete light-like line in $\boldsymbol R^3_1$ is called an entire null line on the surface $S$ in $\boldsymbol R^3_1$ if it lies on $S$ and consists of only null points with respect to the induced metric. In this paper, we show the existence of embedded space-like maximal graphs containing entire null lines. If such a graph is defined on a convex domain in $\boldsymbol R^2$, then it must be a light-like plane. Our example is critical in the sense that it is defined on a certain non-convex domain.
分享
查看原文
洛伦兹-闵可夫斯基三维空间中包含整条零线的类空间极大曲面
考虑一个表面S浸入洛伦兹-闵可夫斯基三维空间R^3_1。$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $黑体符号R $ $ $中的完全类光线称为$ $ $ $ $表面S$上的完整零线,如果它位于$ $ $S$上并且仅由关于诱导度规的零点组成。在本文中,我们证明了包含整个空线的嵌入类空极大图的存在性。如果这样的图被定义在$\boldsymbol R^2$的凸域上,那么它一定是一个类光平面。我们的例子很关键,因为它是在某个非凸域上定义的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信